[1] 徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展[J]. 软件学报, 2020, 31(1): 183-207.
XU Y, SUN Z. Research Development of Abnormal Traffic Detection in Software Defined Networking[J]. Journal of Software, 2020, 31(1): 183-207.
[2] 柳林, 周建涛. 软件定义网络控制平面的研究综述[J]. 计算机科学, 2017, 44(2): 75-81.
LIU L, ZHOU J. Review for Research of Control Plane in Software-defined Network[J]. Computer Science, 2017, 44(2): 75-81.
[3] MALEH Y, QASMAOUI Y, EL GHOLAMI K, et al. A comprehensive survey on SDN security: threats, mitigations, and future directions[J]. Journal of Reliable Intelligent Environments, 2023, 9(2): 201-239.
[4] SHIRMARZ A, GHAFFARI A. Performance issues and solutions in SDN-based data center: a survey[J]. The Journal of Supercomputing, 2020, 76(10): 7545-7593.
[5] MARIN E, BUCCIOL N, CONTI M. An in-depth look into SDN topology discovery mechanisms: novel attacks and practical countermeasures[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 1101-1114.
[6] WAZIRALI R, AHMAD R, ALHIYARI S. SDN-openflow topology discovery: an overview of performance issues[J]. Applied Sciences, 2021, 11(15): 6999.
[7] 徐建峰, 王利明, 徐震. 软件定义网络中资源消耗型攻击及防御综述[J]. 信息安全学报, 2020, 5(04): 72-95.
XU J, WANG L, XU Z. Survey on Resource Consumption Attacks and Defenses in Software-Defined Networking[J]. Cyber Security, 2020, 5(04): 72-95.
[8] CUI Y, QIAN Q, GUO C, et al. Towards DDoS detection mechanisms in software-defined networking[J]. Journal of Network and Computer Applications, 2021, 190: 103156.
[9] JI Z, CUI Y, GUO Y, et al. Towards saturation attack detection in SDN: a multi-edge representation learning-based method[J]. Journal of King Saud University - Computer and Information Sciences, 2025, 37(6): 138.
[10] SHEN Y, WU C, KONG D, et al. Flow table saturation attack against dynamic timeout mechanisms in SDN[J]. Applied Sciences, 2023, 13(12): 7210.
[11] ANTIKAINEN M, AURA T, SÄRELÄ M. Spook in your network: Attacking an SDN with a compromised OpenFlow switch[C]//Proceedings of Nordic Conference on Secure IT Systems. Berlin, Germany: Springer, 2014: 229-244.
[12] SWEETEN J, ELSHAZLY A, TAKIDDIN A, et al. Cyber-physical fusion for GNN-based attack detection in smart power grids[J]. IEEE Open Access Journal of Power and Energy, 2025, 12: 515-528.
[13] DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4027-4035.
[14] ZHENG J, LI D. GCN-TC: Combining trace graph with statistical features for network traffic classification[C]//Proceedings of 2019 IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1-6.
[15] NAGARAJ K, STARKE A, MCNAIR J. GLASS: A graph learning approach for software defined network based smart grid DDoS security[C]//Proceedings of 2021 IEEE International Conference on Communications (ICC). Montreal, Canada: IEEE, 2021: 1-6.
[16] CAO Y, JIANG H, DENG Y, et al. Detecting and mitigating DDoS attacks in SDN using spatial-temporal graph convolutional network[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 19(6): 3855-3872.
[17] WANG K, CUI Y, QIAN Q, et al. USAGE: Uncertain flow graph and spatio-temporal graph convolutional network-based saturation attack detection method[J]. Journal of Network and Computer Applications, 2023, 219: 103722.
[18] SHOAIB F, CHOW Y W, VLAHU-GJORGIEVSKA E, et al. Mitigating timing side-channel attacks in software-defined networks: detection and response[J]. Telecom, 2023, 4(4): 877-900.
[19] ALMAZYAD A, HALMAN L, ALSAEED A. Probe attack detection using an improved intrusion detection system[J]. Computers, Materials & Continua, 2023, 74(3).
[20] Yang Z, Ma Z, Zhao W, et al. HRNN: hypergraph recurrent neural network for network intrusion detection[J]. Journal of Grid Computing, 2024, 22(2): 52.
[21] Feng J, Zhang Y, Piao X, et al. Traffic Anomaly Detection based on Spatio-Temporal Hypergraph Convolution Neural Networks[J]. Physica A: Statistical Mechanics and its Applications, 2024, 646: 129891.
[22] Li J, Zhao B, Zhao G, et al. Hypergraph convolution networks for botnet detection[J]. Knowledge-Based Systems, 2025: 113802.
[23] Song Q, Chen T, Zhu T, et al. APT Detection via Hypergraph Attention Network with Community-Based Behavioral Mining[J]. Applied Sciences, 2025, 15(11): 5872.
[24] Ji Z, Cui Y, Guo Y, et al. Towards saturation attack detection in SDN: a multi-edge representation learning-based method[J]. Journal of King Saud University Computer and Information Sciences, 2025, 37(6): 138.
[25] Tang D, Zuo C, Li X, et al. Low-rate Flow Table Overflow Attack Defense System Based on Two-level Threshold in Software-Defined Networks[J]. Expert Systems with Applications, 2025: 128685.
[26] Tang D, Li X, Tan P, et al. DOE-DTL: A ML-Utilized System Combined With PDP for Detection and Mitigation of DLDoS Attack[J]. IEEE Transactions on Networking, 2025.
[27] OPEN NETWORKING FOUNDATION. OpenFlow switch specification[EB]. [2012-06]. http://www.cs.yale.edu/homes/yuminlan/teach/csci599fall12/papers/openflow-spec-v1.3.0.pdf.
[28] TANG D, WANG S, LIU B, et al. GASF-IPP: Detection and mitigation of LDoS attack in SDN[J]. IEEE Transactions on Services Computing, 2023, 16(5): 3373-3384.
[29] TANG D, YAN Y, ZHANG S, et al. Performance and features: Mitigating the low-rate TCP-targeted DoS attack via SDN[J]. IEEE Journal on Selected Areas in Communications, 2021, 40(1): 428-444.
[30] CHEN Z, YEO C K, LEE B S, et al. Power spectrum entropy based detection and mitigation of low-rate DoS attacks[J]. Computer Networks, 2018, 136: 80-94.
[31] LEI G, JI L, JI R, et al. Extracting low-rate DDoS attack characteristics: The case of multipath TCP-based communication networks[J]. Wireless Communications and Mobile Computing, 2021, 2021(1): 2264187.
[32] BigFlows[EB/OL]. [2023]. http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap.
[33] Data set for IMC 2010 data center measurement[EB/OL]. [2023]. http://pages.cs.wisc.edu/tbenson/IMC10 Data.html.
[34] CAO J, XU M, LI Q, et al. The LOFT attack: Overflowing SDN flow tables at a low rate[J]. IEEE/ACM Transactions on Networking, 2022, 31(3): 1416-1431.
[35] Najar A A, Naik S M. Cyber-secure SDN: A CNN-based approach for efficient detection and mitigation of DDoS attacks[J]. Computers & Security, 2024, 139: 103716.
[36] Lin Z Z, Pike T D, Bailey M M, et al. A hypergraph-based machine learning ensemble network intrusion detection system[J]. IEEE transactions on systems, man, and cybernetics: systems, 2024, 54(11): 6911-6923.
[37] Tran D H, Park M. FN-GNN: A novel graph embedding approach for enhancing graph neural networks in network intrusion detection systems[J]. Applied Sciences, 2024, 14(16): 6932.
[38] Deng X, Zhu J, Pei X, et al. Flow topology-based graph convolutional network for intrusion detection in label-limited IoT networks[J]. IEEE Transactions on Network and Service Management, 2022, 20(1): 684-696.
|