[1] Worthington A M. A study of splashes. By AM Worthington. With 197 illustrations from instantaneous photographs. London and New York[J]. Longmans Green and Co. Science, 1909, 29(742): 464-465.
[2] Watanabe T, Iguchi M. Water model experiments on the effect of an argon bubble on the meniscus near the immersion nozzle[J]. ISIJ international, 2009, 49(2): 182-188.
[3] Richardson E G. The impact of a solid on a liquid surface[J]. Proceedings of the Physical Society, 1948, 61(4): 352.
[4] Shi Y, Wang H, Wang Z, Zhang D. Experimental study on the trajectory of projectile water entry with asymmetric nose shape[J]. Physics of Fluids, 2020, 32(12): 122103. DOI:10.1063/5.0033679.
[5] Savage S B, O’Hern C S. An experimental study of the water entry trajectories of truncated-cone projectiles: The influence of nose parameters[J]. Experimental Thermal and Fluid Science, 2021, 127: 110460. DOI:10.1016/j.expthermflusci.2021.110460.
[6] Hurd R C, Belden J, Truscott T T. Water entry of deformable spheres[EB/OL]. arXiv:1704.01540, 2017.
[7] Von Karman T H. The impact on seaplane floats during landing[R]. 1929.
[8] Li X, Xu D, Wu C. Numerical investigations of trajectory characteristics of a high-speed water-entry projectile[J]. AIP Advances, 2020, 10(10): 105121. DOI:10.1063/5.0022977.
[9] Deng H, Xu Y, Zhang J. Hydrodynamic characteristics of small cylindrical trans-media vehicles during water entry[J]. Aerospace, 2022, 9(12): 805. DOI:10.3390/aerospace9120805.
[10] Lu X, Wang J, Wu G. An extended von Kármán model for wedge water entry[EB/OL]. arXiv:2211.12290, 2022.
[11] Long H, Zhang T, Li Y. Entire aerial-aquatic trajectory modeling and optimization for trans-medium vehicles[J]. Defence Technology, 2025. DOI:10.1016/j.dt.2025.01.004.
[12] Zhao R, Faltinsen O, Aarsnes J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]. Proceedings of the 21st Symposium on Naval Hydrodynamics, 1996: 408–423.
[13] Liu Y, Xie C, Lin P. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method[J]. Journal of Fluid Mechanics, 2023, 960: A27. doi:10.1017/jfm.2023.206.
[14] Wu G, Sun Y, Liu Y, et al. Research on impact pressures in aerated water entry of a symmetrical wedge[J]. Journal of Fluid Mechanics, 2025, 978: A5. doi:10.1017/jfm.2024.1012.
[15] 明付仁, 王文生, 蔡志鹏, 等. 高速跨介质入水多相流动与流固耦合特性研究综述[J]. 空气动力学学报, 2024, 42(1): 68-85. doi:10.7638/kqdlxxb-2023-0197.
Ming Furen, Wang Wensheng, Cai Zhipeng, et al. Review on multiphase flow and fluid–structure interaction characteristics of high-speed cross-medium water entry [J]. Acta Aerodynamica Sinica, 2024, 42(1): 68-85. doi:10.7638/kqdlxxb-2023-0197.
[16] 王余, 李俊, 张亮, 等. 不同头型回转体高速入水流场与运动特性研究[J]. 水下无人系统学报, 2024, 32(2): 28-39. doi:10.11993/j.issn.2096-3920.2024-0028.
ZHAO Hongyu, CHEN Gang, LI Peng. Development and application of mine clearance technology[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 98-104.
[17] 袁绪龙,张宇文,殷崇一,等.无动力潜射导弹运载器出水弹道建模与实验验证[J].弹箭与制导学报,2003,(S5):187-189.
Yuan Xulong, Zhang Yuwen, Yin Chongyi, et al. Modeling and experimental verification of the water-exit trajectory of an unpowered submarine-launched missile carrier [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, (S5): 187-189.
[18] Taş O. A 6DOF simulation tool for autonomous underwater vehicles[D]. Ankara: Middle East Technical University, 2018.Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology, 2000, 5(1): 31-39.
[19] Yettou E M, Desrochers A, Champoux Y. Experimental study on the water impact of a symmetrical wedge[J]. Fluid Dynamics Research, 2006, 38(1): 47-66.
[20] Backer D G, Vantorre M, Beels C, et al. Experimental investigation of water impact on axisymmetric bodies[J]. Applied Ocean Research, 2009, 31(3): 143-156.
[21] Ortiz R, Portemont G, Charles J L, et al. Assesment of explicit F.E. capabilities for full scale coupled fluid/structure aircraft ditching simulations[C]//International Council of the Aeronautical Sciences, Toronto: 2002.
[22] Oger G, Doring M, Alessandrini B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.
[23] Wick A T, Zing G A, Ruszkowski R A, et al. Computational simulation of an unmanned air vehicle impacting water[C]//45th AIAA Aerospace Science Meeting and Exhibit, Reno: AIAA, 2007.
[24] 钱志龙,蔡晓伟,漆培龙,等.基于机器学习的射弹高速入水弹道预测[J].数字海洋与水下攻防,2025,8(03):251-266.DOI:10.19838/j.issn.2096-5753.2025.03.003.
Qian Zhilong, Cai Xiaowei, Qi Peilong, et al. Ballistic prediction of high-speed water-entry projectiles based on machine learning. Digital Ocean and Underwater Offense and Defense, 2025, 8(03): 251-266. DOI: 10.19838/j.issn.2096-5753.2025.03.003.
[25] Long T, Ye N, Zhang B, et al. Entire aerial-aquatic trajectory modeling and optimization for trans-medium vehicles[J]. Defence Technology, 2025.
[26] 赵宏宇, 陈刚, 李鹏. 水雷清除技术发展与应用[J]. 兵器装备工程学报, 2021, 42(6): 98-104.
Zhao Hongyu, Chen Gang, Li Peng. Development and application of mine clearance technology [J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 98-104.
|