[1] Tu C, He X, Shuai Z, et al. Big data issues in smart grid–A review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1099-1107.
[2] 季润阳. 基于智慧城市建设的电网大数据发展技术研究[J]. 现代工业经济和信息化, 2023, 13(5):73-75.
Ji R Y. Research on Big Data Development Technology of Power Grid Based on Smart City Construction [J]. Modern Industrial Economy and Informationization, 2023, 13(5): 73-75.
[3] 江疆,彭泽武,苏华权. 电网大数据跨行业数据融合应用场景[J]. 微型电脑应用, 2022, 38(9):130-132.
Jiang J, Peng Z W, Su H Q. Power Grid Big Data Cross-industry Data Fusion Application Scenarios [J]. Microcomputer Applications, 2022, 38(9):130-132.
[4] Bao-De L, Xin-Yang Z, Mei Z, et al. Improved genetic algorithm-based research on optimization of least square support vector machines: an application of load forecasting[J]. Soft Computing, 2021, 25(18): 11997-12005.
[5] Mellit A, Pavan AM, Lughi V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew Energy 2021;172:276–88.
[6] Khan W, Walker S, Zeiler W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach[J]. Energy, 2022, 240: 122812.
[7] Wang H, Liu Y, Zhou B, et al. Taxonomy research of artificial intelligence for deterministic solar power forecasting[J]. Energy Conversion and Management, 2020, 214: 112909.
[8] Korkmaz D. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting[J]. Applied Energy, 2021, 300: 117410.
[9] Khan Z A, Hussain T, Baik S W. Dual stream network with attention mechanism for photovoltaic power forecasting[J]. Applied Energy, 2023, 338: 120916.
[10] Zhang M, Zhen Z, Liu N, et al. Optimal graph structure based short-term solar PV power forecasting method considering surrounding spatio-temporal correlations[J]. IEEE transactions on industry applications, 2022, 59(1): 345-357.
[11] Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv preprint arXiv:1312.6203, 2013.
[12] 朱涛,金从友,YU Yimeng,等.自适应地理图神经网络短期电力负荷预测模型[J].中国测试,2024,50(S2):223-229.
Zhu T, Jin C Y, YU Y M, et al. Short-term power load forecasting model based on adaptive geographic map neural network [J]. CHINA MEASUREMENT & TEST, 2024, 50 (S2): 223-229.
[13] Yang Y, Liu Y, Zhang Y, et al. DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting[J]. Applied Energy, 2025, 378: 124744.
[14] Yan Z, Xu Y. Real-time optimal power flow with linguistic stipulations: Integrating GPT-agent and deep reinforcement learning[J]. IEEE Transactions on Power Systems, 2023, 39(2): 4747-4750.
[15] 于硕,王司宇,王超,等.类ChatGPT大语言模型在电力系统中的应用前景[J].电气时代,2023,(10):50-53.
YU S, WANG S Y, WANG C, et al. Application prospect of ChatGPT-like large language model in power system [J]. Electric Age, 2023(10):50-53.
[16] 赵俊华,文福拴,黄建伟,等.基于大语言模型的电力系统通用人工智能展望:理论与应用[J].电力系统自动化,2024,48(06):13-28.
ZHAO J H, WEN F S, HUANG J W, et al. Preliminary research on generalized artificial intelligence for power system based on large language modeling: theory and applications [J/OL]. Automation of Electric Power Systems, 2024, 48(06): 13-28.
[17] 南方电网首个配网AI大模型实现实体化应用[J].电力安全技术,2024,26(05):36.
The first large-scale AI model of China Southern Power Grid realizes practical application[J]. Electric Power Safety Technology, 2024, 26 (05): 36.
[18] Ray P P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope[J]. Internet of Things and Cyber-Physical Systems, 2023, 3: 121-154.
[19] 李敬灿, 肖萃林, 覃晓婷,等. 基于大语言模型与语义增强的文本关系抽取算法[J]. 计算机工程, 2024, 50(4): 87-94.
Li J C, Xiao C L, Qin X T, et al. Text-Relation-Extraction Algorithm Based on Large-Language Model and Semantic Enhancement[J]. Computer Engineering, 2024, 50(4): 87-94.
[20] 徐浩,康振渊,张焱,等.面向电力变压器故障辅助决策的知识图谱构建及补全策略研究[J].中国安全生产科学技术,2025,21(05):46-54.
Xu H, Kang Z Y, Zhang Y, et al. Research on construction and completion strategies of knowledge graph for fault assistant decision-making of power transformers [J]. Journal of Safety Science and Technology, 2025, 21 (05): 46-54.
[21] 任晓龙,陈曦,司恒斌,等.基于Neo4j图数据库的电力系统与综合能源系统知识图谱研究[J].电力科学与技术学报,2025,40(03):211-221.DOI:10.19781/j.issn.1673-9140.2025.03.023.
Ren X L, Chen X, Si H B, Power system and comprehensive energy knowledge graph based on Neo4j graph database [J]. Journal of Electric Power Science and Technology, 2025, 40 (03): 211-221.DOI:10.19781/j.issn.1673-9140.2025.03.023.
[22] Li Z, Yang C, Huang Q, et al. Building Model as a Service to support geosciences[J]. Computers, Environment and Urban Systems, 2017, 61: 141-152.
[23] Liang J, Hou S, Zhao A, et al. Design and application of a semantic-driven geospatial modeling knowledge graph based on large language models[J]. Geo-spatial Information Science, 2025: 1-20.
[24] Yang L, Tsung F, Wang K, et al. Wind power forecasting based on a spatial–temporal graph convolution network with limited engineering knowledge[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-13.
[25] Duan Z, Bian C, Yang S, et al. Prompting large language model for multi-location multi-step zero-shot wind power forecasting[J]. Expert Systems with Applications, 2025, 280: 127436.
[26] http://www.nrel.gov/grid/solar-power-data.html
[27] Huang Y, Zhou M, Zhang S, Yang X, Zhang S, Liu H. Research on pv power forecasting based on wavelet decomposition and temporal convolutional networks. In: 2021 IEEE 4th international electrical and energy conference. IEEE; 2021, p. 1–6.
[28] Wang L, Cao H, Xu H, et al. A gated graph convolutional network with multi-sensor signals for remaining useful life prediction[J]. Knowledge-Based Systems, 2022, 252: 109340.
[29] Zhang W, Yu Y, Ji S, et al. A multitask graph convolutional network with attention-based seasonal-trend decomposition for short-term load forecasting[J]. IEEE Transactions on Power Systems, 2025, 40(4): 3222-3231.
[30] 冯国平,陈志坚,林志煜,等.基于动态领域图谱与大小模型协同的电力领域术语识别[J/OL].计算机工程,1-18[2025-10-28].https://doi.org/10.19678/j.issn.1000-3428.0252291.
FENG Guoping, CHEN Zhijian, Lin Zhiyu, HONG Liang. Term Recognition in the Electric Power Domain Based on Dynamic Domain Graphs and Collaborative Large and Small Models[J]. Computer Engineering, doi: 10.19678/j.issn.1000-3428.0252291.
|