[1] ZHANG H, HUANG C, WANG D, et al. Artificial Intelligence in Scoliosis: Current Applications and Future Directions[J]. Journal of Clinical Medicine, 2023, 12(23): 7382.
[2] ALMAHMOUD O H, BANIODEH B, MUSLEH R, et al. Assessment of idiopathic scoliosis among adolescents and associated factors in Palestine[J]. Journal of Pediatric Nursing, 2024, 74(1): 85-91.
[3] KASSAB D K, KAMYSHANSKAYA I G, TRUKHAN S V. A new artificial intelligence program for the automatic evaluation of scoliosis on frontal spinal radiographs: accuracy,advantages and limitations[J]. Digital Diagnostics, 2024, 5(2): 243–254.
[4] MAEDA Y, NAGURA T, NAKAMURA M, et al. Automatic measurement of the Cobb angle for adolescent idiopathic scoliosis using convolutional neural network[J]. Scientific Reports, 2023, 13: 14576.
[5] YAO W, BAI J, LIAO W, et al. From CNN to transformer: a review of medical image segmentation models[J]. Journal of Imaging Informatics in Medicine, 2024, 37(4): 1529-1547.
[6] AZAD R, AGHDAM E K, RAULAND A, et al. Medical image segmentation review: the success of U-Net[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10076-10095.
[7] 殷晓航, 王永才, 李德英. 基于U-Net结构改进的医学影像分割技术综述[J]. 软件学报, 2021, 32(2): 519-550.
YIN X H, WANG Y C, LI D Y. A survey of medical image segmentation techniques based on U-Net structural improvements[J]. Journal of Software, 2021, 32(2): 519-550.
[8] GAO Y, JIANG Y, PENG Y, et al. Medical image segmentation: a comprehensive review of deep learning-based methods[J]. Tomography, 2025, 11(5): 52.
[9] VASINKOVA M, DOLEZI V, VASINEK M, et al. Comparing deep learning performance for chronic lymphocytic leukaemia cell segmentation in brightfield microscopy images[J]. Bioinformatics and Biology Insights, 2024, 18: 11779322241272387.
[10] 周丽娟, 毛嘉宁. 视觉Transformer识别任务研究综述[J]. 中国图象图形学报, 2023, 28(10): 2969-3003.
ZHOU L J, MAO J N. A survey of visual transformer for recognition tasks[J]. Journal of Image and Graphics, 2023, 28(10): 2969–3003.
[11] 彭雨彤, 梁凤梅. 融合CNN和ViT的乳腺超声图像肿瘤分割方法[J]. 智能系统学报, 2024, 19(3): 556-564.
PENG Y T, LIANG F M. Breast ultrasound tumor segmentation method integrating CNN and ViT[J]. CAAI Transactions on Intelligent Systems, 2024, 19(3): 556-564.
[12] LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021: 10012–10022.
[13] 石军, 王天同, 朱子琦, 等. 基于深度学习的医学图像分割方法综述[J]. 中国图象图形学报, 2025, 30(6): 2161-2186.
SHI J, WANG T T, ZHU Z Q, et al. Deep learning-based medical image segmentation methods[J]. Journal of Image and Graphics, 2025, 30(6): 2161-2186.
[14] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning. Virtual Event: Proceedings of Machine Learning Research (PMLR), 2021: 10347-10357.
[15] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题:现状及展望[J]. 自动化学报, 2022, 48(4): 957-979.
TIAN Y L, WANG Y T, WANG J G, et al. Key issues of visual transformer research: status and prospect[J]. Acta Automatica Sinica, 2022, 48(4): 957-979.
[16] LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 10012–10022.
[17] STASSIN S, CORDUANT V, MAHMOUDI S A, et al. Explainability and evaluation of vision transformers: an in-depth experimental study[J]. Electronics, 2024, 13(1): 175.
[18] HOSSAIN M B, SHINDE R K, IMTIAZ S M, et al. Swin Transformer and the UNet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction[J]. International Journal of Biomedical Imaging, 2024, 2024: 8972980.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations. Online: OpenReview, 2021.
[20] LIU Z, HU H, LIN Y, et al. Swin Transformer V2: scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 12009-12019.
[21] NEVO S, MORIN E, ROSENTHAL A G, et al. Flood forecasting with machine learning models in an operational framework[J]. Hydrology and Earth System Sciences, 2022, 26(13): 4013-4035.
[22] FABRIZIO J. How to compute the convex hull of a binary shape? A real-time algorithm to compute the convex hull of a binary shape[J]. Journal of Real-Time Image Processing, 2023, 20(3): 223-235.
[23] MONFARED R V, SMITH A, JOHNSON K, et al. Cilia in the brain display region-dependent oscillations[J]. Journal of Neuroscience Research, 2025, 103(7): 1123-1135.
[24] ZHOU Q, YU C. POINT RCNN: AN ANGLE-FREE FRAMEWORK FOR ROTATED OBJECT DETECTION[J]. Remote Sensing, 2022, 14(11): 2605.
[25] APEINANS I, KODORS S, ZAREMBO I. Large language models: comparison of cross-entropy and binary cross-entropy loss[J]. Human. Environment. Technology, 2024, (28): 5–8.
[26] SHI Pengcheng, HU Jiesi, YANG Yanwu, GAO Zilve, LIU Wei, MA Ting. Centerline boundary Dice loss for vascular segmentation[C]// Medical Image Computing and Computer Assisted Intervention – MICCAI 2024: 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part VIII. Cham: Springer, 2024: 46-56.
[27] WANG L, XIE C, LIN Y, et al. Evaluation and comparison of accurate automated spinal curvature estimation algorithms with spinal anterior-posterior X-Ray images: The AASCE2019 challenge[J]. Medical Image Analysis, 2021, 72: 102115.
[28] Zhang H, Li Y, Wang Q, et al. Multi-scale dynamic weighted context network (MDWC-Net) for precise spinal X-ray segmentation and clinical application. Medical Image Analysis, 2025, 81: 102530.
[29] Wu Y, Ge Z, Cai J, et al.S³-Mamba: Small-size sensitive Mamba-CNN hybrid architecture for spinal X-ray segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2025: 123-132.
[30] Hao Z, Zhang J, Li L. Framework for lung CT image segmentation based on Unet++[J]. 2025.
[31] Trebing, Kevin, Tomasz Staǹczyk, and Siamak Mehrkanoon. "SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture." Pattern Recognition Letters 145 (2021): 178-186.
[32] Fan T, Wang G, Li Y, et al. Ma-net: A multi-scale attention network for liver and tumor segmentation[J]. Ieee Access, 2020, 8: 179656-179665.
|