[1]
Antonelli M, Reinke A, Bakas S, et al. The medical
segmentation decathlon[J]. Nature communications, 2022,
13(1): 4128.
[2] He K, Gan C, Li Z, et al. Transformers in medical image
analysis[J]. Intelligent Medicine, 2023, 3(1): 59-78.
[3] Hatamizadeh A, Tang Y X, Nath V, et al. UNETR:
Transformers
for
3D
Segmentation[C]//Proc IEEE/CVF WACV. 2022: 574-584.
[4] Wang L, Hu P, Shen C, et al. TransBTS: Multimodal Brain
Tumor Segmentation Using Transformer[C]//MICCAI.
2021. DOI:10.1007/978-3-030-87234-2_50.
[5] Valanarasu J M J, Oza P, Hacihaliloglu I, et al. Medical
Transformer: Gated Axial-Attention for Medical Image
Segmentation[C]//MICCAI. 2021.
[6]
Ntanzi S, Viriri S. UNETR++ with Voxel-Focused
Attention: Efficient 3D Medical Image Segmentation with
Linear-Complexity Transformers[J]. Applied Sciences,
2025, 15(20): 11034.
[7] Geng S, Jiang S, Hou T, et al. FEU-Diff: A Diffusion
Model With Fuzzy Evidence-Driven Dynamic Uncertainty
Fusion for Medical Image Segmentation[J]. IEEE
Transactions on Neural Networks and Learning Systems,
2025.
[8] Gao M, Yang Y, Wang H, et al. DDPM-UNet: Denoising
diffusion probabilistic models for 3D medical image
segmentation[C]//MICCAI. 2022.
[9] Zheng H, Zhang Y, Zhang X, et al. Semantic diffusion for
weakly supervised medical ima ge segmentation[C]//Proc
AAAI Conf Artif Intell. 2023.
[10] Gao Y, Glocker B, Rueckert D. Graph U-Net for brain
cortical parcellation[C]//MICCAI. 2019.
[11] Zhu M, Xiao Y, Liu J, et al. Graph Attention U-Net for
brain tumor segmentation[J]. Neurocomputing, 2021, 452:
360-372.
[12] Chai S, Jain R K, Mo S, et al. A novel adaptive hypergraph
neural
network
for
enhancing
medical
segmentation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Cham: Springer Nature Switzerland, 2024: 23-33.
[13] Zhou X, Sun Y, Deng M, et al. Robust semi-supervised
multimodal medical image segmentation via cross
modality collaboration[C]//International Conference on
Medical Image Computing and Computer-Assisted
Intervention. Cham: Springer Nature Switzerland, 2024:
57-67.
[14] Zhang J, Ye Z, Chen M, et al. TransGraphNet: A novel
network for medical image segmentation based on
transformer and graph convolution[J]. Biomedical Signal
Medical
Image
image
Processing and Control, 2025, 104: 107510.
[15] Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make
strong encoders for medical image segmentation[J].
Medical
Image
Analysis,
2024,
DOI:10.1016/j.media.2024.103280.
97:
103280.
[16] Zhang Y, Liu H, Hu Q. TransFuse: Fusing Transformers
and CNNs for Medical Image Segmentation[C]//MICCAI
2021. Cham: Springer, 2021: 3-13.
[17] Chen T, Wang C, Chen Z, et al. HiDiff: Hybrid diffusion
framework for medical image segmentation[J]. IEEE
Transactions on Medical Imaging, 2024.
[18] Qurri A L, Almekkawy M. Hybrid MultiResUNet with
transformers for medical image segmentation[J]. Biomed
Signal Process Control, 2025, 110(Pt A): 108056.
[19] Xing Z, Wan L, Fu H, et al. Diff-UNet: A diffusion
embedded network for robust 3D medical image
segmentation[J]. Medical Image Analysis, 2025: 103654.
[20] Nagare M, Buzzard G T, Bouman C A. Texture matching
GAN for CT image enhancement[J]. Journal of
Mathematical Imaging and Vision, 2025, 67(4): 1-15.
[21] Xing Z, Ye T, Yang Y, et al. Segmamba: Long-range
sequential modeling mamba for 3d medical image
segmentation[C]//International conference on medical
image computing and computer-assisted intervention.
Cham: Springer Nature Switzerland, 2024: 578-588.
[22] Luo H, He T, Yi Z. A stable mapping of nmODE[J].
Artificial Intelligence Review, 2024, 57(5): 120.
[23] Niu H, Zhou Y, Yan X, et al. On the applications of neural
ordinary differential equations in medical image
analysis[J]. Artificial Intelligence Review, 2024, 57(9):
236.
[24] He Q, Yao X, Wu J, et al. A lightweight U-like network
utilizing neural memory ordinary differential equations for
slimming the decoder[C]//IJCAI-24. Vienna: International
Joint Conferences on Artificial Intelligence Organization,2024: 821-829.
[25] Xu X, Luo H, Yi Z, et al. A forward learning algorithm for
neural
memory ordinary differential equations[J].
International journal of neural systems, 2024, 34(09):
2450048.
[26] Wang Z, Gu J, Zhou W, et al. Neural memory state space
models for medical image segmentation[J]. International
journal of neural systems, 2025, 35(1): 2450068.
[27] Ma J, Zhang Y, Gu S, et al. Segment anything in medical
images with prompt-enhanced vision foundation model[J].
Nat Mach Intell, 2023, 5(9): 1135-1146.
[28] Wu J, Wang Z, Hong M, et al. Medical SAM adapter:
Adapting segment anything model for medical image
segmentation[J]. Medical Image Analysis, 2025, 102:
103547.
[29] Li Z, Li Y, Li Q, et al. LViT: Language Meets Vision
Transformer in Medical Image Segmentation[J]. IEEE
Trans
Med Imaging, 2024, 43(1): 96-107.
DOI:10.1109/TMI.2023.3291719.
[30] Fischer M, Bartler A, Yang B. Prompt tuning for
parameter-efficient
medical
image segmentation[J].
Medical Image Analysis, 2024, 91: 103024.
[31] Cheng Z, Wei Q, Zhu H, et al. Unleashing the potential of
sam for medical adaptation via hierarchical
decoding[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2024: 3511-3522.
[32] Wu J, Wang Z, Hong M, et al. Medical sam adapter:
Adapting segment anything model for medical image
segmentation[J]. Medical image analysis, 2025, 102:
103547.
[33] Bai W, Chen C, Tarroni G, et al. Semi-supervised learning
for cardiac MRI segmentation via anatomical edge and
shape constraints [J]. Med Image Anal, 2022.
[34] 赖小波, 许茂盛, 徐小媚. 多模态 MR 图像和多特征融
合的胶质母细胞瘤自动分割[J]. 计算机辅助设计与图
形学学报, 2019, 31(3): 421-430. DOI:
10.3724/SP.J.1089.2019.17120.
Lai Xiaobo, Xu Maosheng, Xu Xiaomei. Automatic
Segmentation for Glioblastoma Multiforme Using
Multimodal MR Images and Multiple Features[J]. Journal
of Computer-Aided Design & Computer Graphics, 2019,
31(3): 421-430. DOI: 10.3724/SP.J.1089.2019.17120.
[35] Patrício C, Neves J C, Teixeira L F. Explainable deep
learning methods in medical image classification: A
survey[J]. ACM Computing Surveys, 2023, 56(4): 1-41.
[36] Tjoa E, Guan C. A Survey on Explainable Artificial
Intelligence (XAI): Toward Medical XAI [J]. IEEE Trans
Neural Netw Learn Syst, 2020, 32 (11):4793 - 4813.
[37] Maier-Hein L, Reinke A, Eisenmann M, et al. Metrics
Reloaded: Pitfalls and Recommendations for Image
Analysis Validation [J]. Nat Commun, 2022.
[38] Taha A A, Hanbury A. Metrics for evaluating 3D medical
image segmentation: analysis, selection, and tool [J]. BMC
Med Imaging, 2015, 15:29.
[39] Kervadec H, Dolz J, Yuan J, et al. Boundary loss for highly
unbalanced segmentation [C]//Proc MICCAI. 2018:285 -
293.
[40] Isensee F, Wald T, Ulrich C, et al. nnu-net revisited: A call
for
rigorous
validation
in
3d medical image
segmentation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Cham: Springer Nature Switzerland, 2024: 488-498.
[41] Shaker A, Maaz M, Rasheed H, et al. UNETR++: delving
into
efficient
and accurate 3D medical image
segmentation[J]. IEEE Transactions on Medical Imaging,
2024, 43(9): 3377-3390.
[42] Hatamizadeh A, Tang Y, Nath V, et al. Unetr: Transformers
for 3d medical image segmentation[C]//Proceedings of the
IEEE/CVF winter conference on applications of computer
vision. 2022: 574-584.
[43] Roy S, Koehler G, Ulrich C, et al. Mednext:
transformer-driven scaling of convnets for medical image
segmentation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Cham: Springer Nature Switzerland, 2023: 405-415.
[44]
Taha A A, Hanbury A. Metrics for evaluating 3D
medical image segmentation: analysis, selection, and
tool[J]. BMC medical imaging, 2015, 15(1): 29.
[45] 王斯豪,张笃振,杨昌昌。基于双路径注意力机制和多
尺度信息融合的皮肤病变图像分割 [J]. 计算机应用,
2025,
45
(3):
DOI:10.11772/j.issn.1001-9081.2024111669.
978-989.
Wang S H, Zhang D Z, Yang C C. Skin Lesion Image
Segmentation Based on Dual-Path Attention Mechanismand Multi-Scale Information Fusion[J]. Journal of
Computer Applications, 2025, 45(3): 978-989. DOI:
10.11772/j.issn.1001-9081.2024111669.
[46] Sikha O K, Galdran A, Riera i Marín M, et al. Uncertainty
aware segmentation quality assessment in medical images
[C]//ISBI. Athens, Greece:IEEE, 2024:1 - 5. DOI:
10.1109/ISBI56570.2024.10635509.
[47] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense
object detection[C]//2017 IEEE ICCV. Venice, Italy:IEEE,
2017:2999-3007. DOI:10.1109/ICCV.2017.324.
[48]
Liu X, Hou S, Liu S, et al. Attention-based multimodal
glioma segmentation with multi-attention layers for
small-intensity dissimilarity[J]. Journal of King Saud
University-Computer and Information Sciences, 2023,
35(4): 183-195.
[49] Lo H, Vasconcelos N, Trivedi M, et al. Topological
Constraints
in
Deep
Learning
Segmentation[C]//Proc CVPR. 2022.
[50]
for
Image
Wen B, Zhang H, Bartsch D U G, et al.
Topology-preserving
image
segmentation
with
spatial-aware persistent feature matching[C]//Proceedings
of the IEEE/CVF International Conference on Computer
Vision. 2025: 5762-5771.
[51]
Liu Z, Sunar M S, Tan T S, et al. Deep learning for retinal
vessel segmentation: a systematic review of techniques
and applications[J]. Medical & Biological Engineering &
Computing, 2025: 1-18.
[52] Shit S, Abdulkadir A, et al. clDice – A novel
topology-preserving loss function for tubular structure
segmentation[C]//Proc CVPR. 2021.
[53] 邢莹, 闫晓华, 普程伟, 等. 全自动数字图像分析在外
周血白细胞形态学复检中的临床应用 [J] . 中华医学杂
志 , 2016, 96(8) : 634-639. DOI:
10.3760/cma.j.issn.0376-2491.2016.08.011.
Xing Y, Yan X H, Pu C W, et al. Clinical Application of
Automatic Digital Image Analysis in the Review of
Peripheral Blood Leukocyte Morphology[J]. National
Medical Journal of China, 2016, 96(8): 634-639. DOI:
10.3760/cma.j.issn.0376-2491.2016.08.011.
[54]
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a
self-configuring
method for deep learning-based
biomedical image segmentation[J]. Nature methods, 2021,
18(2): 203-211.
[55] Wang L, Zhao Y, Yuan H, et al. TransBTS: Multimodal
brain tumor segmentation using transformer[J]. Med
Image Anal, 2021, 68:101872.
[56] Xing Z, Ye T, Yang Y, et al. Segmamba: Long-range
sequential modeling mamba for 3d medical image
segmentation[C]//International conference on medical
image computing and computer-assisted intervention.
Cham: Springer Nature Switzerland, 2024: 578-588.
[57]
Jeon Y S, Yang H, Fu H, et al. Teaching ai the anatomy
behind the scan: Addressing anatomical flaws in medical
image segmentation with learnable prior[C]//Proceedings
of the IEEE/CVF International Conference on Computer
Vision. 2025: 24024-24033.
[58] Ma J, He Y, Li F, et al. Segment anything in medical
images[J]. Nature Communications, 2024, 15(1): 654.
[59] Koleilat T, Asgariandehkordi H, Rivaz H, et al.
Medclip-sam: Bridging text and image towards universal
medical image segmentation[C]//International conference
on medical image computing and computer-assisted
intervention. Cham: Springer Nature Switzerland, 2024:
643-653.
[60] Ji Y, Zhang Z, Zhou T, et al. MedClick: Interactive
Medical Image Segmentation with Click Prompt[C]//Proc
MICCAI. 2023.
[61] Luo Y, Xu Q, Feng J, et al. Med-FastSAM: Improving
Transfer Efficiency of SAM to Domain-Generalised
Medical Image Segmentation[EB/OL]. 2024.
[62] Rahmati B, Shirani S, Keshavarz-Motamed Z. A hybrid
approach for enhancing pseudo-labeling in medical images
through pseudo-label refinement[J]. Scientific Reports,
2025, 15(1): 35161.
[63]
Liu X, Song L, Liu S, et al. A review of
deep-learning-based
medical
image
methods[J]. Sustainability, 2021, 13(3): 1224.
[64]
segmentation
Liu X, Ding X, Yu L, et al. Pq-sam: Post-training
quantization for segment anything model[C]//European
Conference on Computer Vision. Cham: Springer Nature
Switzerland, 2024: 420-437.
|