[ 1 ] 宋霄罡,张鹏飞,刘万波,等. 多尺度大核注意力特征融合网络的图像超分辨率重建[J]. 中国图象图形学报, 2025, 30(04): 1084-1099.
Song Xiaogang, Zhang Pengfei, Liu Wanbo, et al. Image super resolution reconstruction based on multiscale large-kernel attention feature fusion network [J]. Journal of Image and Graphics, 30(04):1084-1099.
[ 2 ] Huang W, Liao X, Chen H, et al. Deep local-to-global feature learning for medical image super-resolution. Computerized Medical Imaging and Graphics [J]. 2024, 115:102374.
[ 3 ] Xiao Y, Yuan Q, Jiang K, et al. TTST: A Top-k Token Selective Transformer for Remote Sensing Image Super- Resolution[J]. IEEE Transactions on Image Processing, 2024, 33: 738-752.
[ 4 ] Zhang Y, Li K, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]// Computer Vision-ECCV 2018. Cham: Springer, 2018: 286-301.
[ 5 ] 辜翱, 方艳红. 基于几何约束和结构注意力机制的图像超分辨率[J]. 计算机科学与探索, 2025, 19(7): 1868-1877.
GU Ao, FANG Yanhong. Image Super-Resolution Based on Geometric Constraints and Structural Attention Mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1868-1877.
[ 6 ] ZHANG X, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 649-667.
[ 7 ] 李大海, 吕春桂, 王振东. 基于双分支序列残差注意力的场景文本图像超分辨率重建[J]. 计算机工程, 2024, 50(9): 286-295.
LI Dahai, LÜ Chungui, WANG Zhendong. Scene Text Image Super-Resolution Reconstruction Based on Dual-Branched Sequence Residual Attention[J]. Computer Engineering, 2024, 50(9): 286-295.
[8] ZHANG X, ZHANG Y, YU F. HiT-SR: Hierarchical transformer for efficient image super-resolution [C]// European Conference on Computer Vision. 2024: 483-500.
[ 9 ] 吕鑫栋, 李娇, 邓真楠, 等. 基于改进Transformer的结构化 图像超分辨网络[J]. 浙江大学学报(工学版), 2023, 57(5): 865-874, 910
LÜ X D, LI J, DENG Z N, et al. Structured image super resolution network based on improved Transformer[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(5): 865-874, 910.(in Chinese)
[10] 陈豪, 夏振平, 程成, 等. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 计算机应用, 2024, 44(1): 292-299.
Hao CHEN, Zhenping XIA, Cheng CHENG, et al. Lightweight image super-resolution reconstruction network based on Transformer-CNN[J]. Journal of Computer Applications, 2024, 44(1): 292-299.
[11] LIANG J, CAO J, SUN G, et al. SwinIR: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF international conference on computer vision. Washington D. C., USA: IEEE Press, 2021: 1833-1844.
[12] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration [C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2022: 5728-5739.
[13] PARK K, SOH J W, CHO N I. Efficient attention-sharing information distillation transformer for lightweightsingle image super-resolution[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2025: 6416-6424.
[14] 赵瑶谦, 滕奇志, 何小海, 税爱, 陈洪刚. 基于自注意力特征蒸馏的轻量级图像超分辨率重建[J]. 计算机工程, 2025, 51(5): 257-265.
ZHAO Yaoqian, TENG Qizhi, HE Xiaohai, SHUI Ai CHEN Honggang. Lightweight Image Super-Resolution Reconstruction Based on Self-Attention Feature Distillation[J]. Computer Engineering, 2025, 51(5):257- 265.
[15] 孟海腾, 赵小乐, 李天瑞. 基于非对称信息蒸馏网络的轻量级图像超分辨重建[J]. 计算机应用, 2025, 45(2): 601-609.
Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network[J]. Journal ofComputer Applications, 2025, 45(2): 601-609.
[16] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(2): 295-307.
[17] DONG C, LOY C C, TANG X. Accelerating the super- resolution convolutional neural network[C]// European conference on computer vision. Cham: Springer International Publishing, 2016: 391-407.
[18] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Honolulu, USA: IEEE Press, 2017: 1132-1140.
[19] 柳聪, 屈丹, 司念文, 魏紫薇. 基于深度可分离卷积的轻量级图像超分辨率重建[J]. 计算机工程, 2022, 48(6): 228-234.
LIU Cong, QU Dan, SI Nianwen, et al. Lightweight Image Super-Resolution Reconstruction Based on Depthwise Separable Convolution[J]. Computer Engineering, 2022, 48(6): 228-234.
[20] HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM international conference on multimedia. NewYork, USA: ACM Press, 2 019:2024-2032.
[21] LI Z, LIU Y, CHEN X, et al. Blueprint separable residual network for efficient image super-resolution[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2022: 833-843.
[22] SUN L, DONG J, TANG J, et al. Spatially-adaptive feature modulation for efficient image super-resolution[C]// Proceedings of the IEEE/CVF international conference on computer vision. Washington D. C., USA: IEEE Press, 2023: 13190-13199.
[23] HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[EB/OL]. [2025-09-15]. https://arxiv.org/abs/1912.12180.
[24] WANG H, CHEN X, NI B, et al. Omni aggregation networks for lightweight image super-resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 22378-22387.
[25] ZHANG A, REN W, LIU Y, et al. Lightweight image super-resolution with superpixel token interaction[C]// Proceedings of the IEEE/CVF international conference on computer vision. Washington D. C., USA: IEEE Press, 2023: 12728-12737.
[26] ZHENG M, SUN L, DONG J, et al. SMFANet: A lightweight self-modulation feature aggregation network for efficient image super-resolution[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2024: 359-375.
[27] WANG Y, LI Y S, WANG G, et al. Multi-scale attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 5950-5960.
[28] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]//Proceedings of the IEEE/CVF international conferenceon computer vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
[29] WANG W, CHEN W, QIU Q, et al. Crossformer++: A versatile vision transformer hinging on cross-scale attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 46(5): 3123-3136.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2017: 5998-6008.
[31] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al.Ntire 2017 challenge on single image super-resolution:Methods and results[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Honolulu, USA: IEEE Press, 2017: 114-125.
[32] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL]. [2024-03-05]. http:// eprints. imtlucca. it/2412/1/Bevilacqua_2012.pdf.
[33] ZEYDE R, ELAD M. On single image scale -up using sparse-representations[EB/OL]. [2024-03-05]. https://link. springer.com/ chapter/10.1007/978-3-642-27413-8_47.
[34] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuringe cological statistics[C]//Proceedings of the Eighth IEEE International Conference on Computer Vision. Washington
D. C., USA: IEEE Press, 2001: 416-423.
[35] HUANG J B, SINGH A. Single super-image resolution from transformed self-exemplars[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2015: 5197-5206.
[36] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch- basedmanga retrieval using manga109 dataset[J]. Multimediatools and applications, 2017, 76(20):21811-218 38.
[37] KINGMA D P, BA J. Adam: A method for stochasticoptimization[EB/OL]. [2025-09-15]. https://arxi v.org/abs/1412.6980.
[38] HUI Z, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2018: 723-731.
[39] CHOI H, LEE J, YANG J. N-gram in swin transformers for efficient lightweight image super-resolution[C]// Proceedings of the IEEE/CVF conference on pattern and computer vision recognition. Washington D. C., USA: IEEE Press, 2023: 2071-2081.
[40] FANG J, LIN H, CHEN X, et al. A hybrid network of cnn and transformer for lightweight image super-resolution [C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2022: 1103-1112.
[41] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network [EB/OL]. [2024-03-04]. https://arxiv.org/abs/1803
.08664
[42] LU Z, LI J, LIU H, et al. Transformer for single image super-resolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2022: 457-466.
[43] LIU X, LIU J, TANG J, et al. CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 17902-17912.
|