[1] 熊炜,黄玉谦,孟圣哲.基于改进YOLOv8算法的绝缘子缺陷检测模型[J].电子测量技术,2024,47(12):132-139.
XIONG Wei, HUANG Yuqian, MENG Shengzhe. Insulator defect detection model based on improved YOLOv8 algorithm[J]. Electronic Measurement Technology, 2024, 47(12): 132-139.
[2] 亢洁,常琦,王勍,等. 融合DepGraph偏移正则化的绝缘子多缺陷检测轻量化算法 [J/OL]. 计算机工程与应用, 1-12[2025-11-06]. https://link.cnki.net/urlid/11.2127.tp.20250326.1741.031.
KANG Jie, CHANG Qi, WANG Qing, et al. Lightweight algorithm for insulator multi-defect detection integrating DepGraph offset regularization[J/OL]. Computer Engineering and Applications, 1-12[2025-11-06].
[3] 黄悦华, 刘恒冲, 陈庆, 等. 基于USRNet与改进YOLOv5x的输电线路绝缘子故障检测方法[J]. 高电压技术, 2022, 48(9): 3437-3446.
HUANG Yuehua, LIU Hengchong, CHEN Qing, et al. Transmission line insulator fault detection method based on USRNet and improved YOLOv5x[J]. High Voltage Engineering, 2022, 48(9): 3437-3446.
[4] 高文婷, 刘越. 面向移动增强现实的实时深度学习目标检测方法综述[J]. 图学学报, 2021, 42(4): 525-534.
GAO Wenting, LIU Yue. A review of real-time deep learning object detection methods for mobile augmented reality[J]. Journal of Graphs, 2021, 42(4): 525-534.
[5] LIANG H G, CHAO Z, WANG M W. Detection and Evaluation Method of Transmission Line Defects Based on Deep Learning[J]. IEEE Access, 2020, 8: 38448-38458.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788.
[7] 杨露露, 马萍, 王聪, 等. 结合特征重用与重建的YOLO绝缘子检测方法[J]. 计算机工程, 2024, 50(7): 303-313. DOI:10.19678/j.issn.1000-3428.0068244.
YANG Lulu, MA Ping, WANG Cong, et al. YOLO-based insulator detection method combining feature reuse and reconstruction[J]. Computer Engineering, 2024, 50(7): 303-313. DOI:10.19678/j.issn.1000-3428.0068244.
[8] 谢静, 杜耀文, 刘志坚, 等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47(12): 5273-5283.
XIE J, DU Y W, LIU Z J, et al. Defect detection algorithm based on lightweight improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47(12): 5273-5283.
[9] 宋智伟, 黄新波, 纪超, 等. 基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法[J]. 高电压技术, 2023, 49(12): 5084-5094.
SONG Z W, HUANG X B, JI C, et al. Insator defect detection and fault warning method for transmission line based on Flexible YOLOv7[J]. High Voltage Engineering, 2023, 49(12): 5084-5094.
[10] 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J]. 电工技术学报, 2024, 39(11): 3522-3537.
ZHANG Y, LI B T, SHANG J H, et al. Detection of anti-vibration hammer defects in transmission lines based on multi-scale convolutional attention mechanism[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3522-3537.
[11] Ji Y ,Zhang D ,He Y , et al.Improved YOLO11 Algorithm for Insulator Defect Detection in Power Distribution Lines[J].Electronics,2025,14(6):1201-1201.
[12] SALEH E H, Badawy W, Fouad M, et al. Textile Inspection Based on À trous Wavelet Transform[J]. Wireless Personal Communications, 2024, 138(3): 1405-1422.
[13] 贺小箭, 林金福. 融合弱监督目标定位的细粒度小样本学习[J]. 中国图象图形学报, 2022, 27(7): 2226-2239.
HE X J, LIN J F. Weakly-supervised object localization based fine-grained few-shot learning[J]. Journal of Image and Graphics, 2022, 27(7): 2226-2239.
[14] 马学森, 马吉, 蒋功辉, 等. 基于注意力机制和多尺度特征融合的绝缘子缺陷检测方法[J]. 南京大学学报(自然科学), 2022, 58(6): 1020-1029.
MA X S, MA J, JIANG G H, et al. Insulator defect detection method based on attention mechanism and multi-scale feature fusion[J]. Journal of Nanjing University (Natural Sciences), 2022, 58(6): 1020-1029.
[15] TAO X, ZHANG D, WANG Z, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(4): 1486-1498.
[16] 黄萍, 李清, 邱海枫, 等. 轻量化输电线路缺陷检测方法[J/OL]. 计算机应用: 1-14[2025-09-09]. https://link.cnki.net/urlid/51.1307.TP.20250625.1541.008.
HUANG P, LI Q, QIU H F, et al. Lightweight defect detection method for transmission lines[J/OL]. Journal of Computer Applications: 1-14[2025-09-09]. https://link.cnki.net/urlid/51.1307.TP.20250625.1541.008.
[17] 亢洁, 刘港, 郭国法. 基于多尺度融合模块和特征增强的杂草检测方法[J]. 农业机械学报, 2022, 53(4): 254-260.
KANG J, LIU G, GUO G F. Weed detection based on multi-scale fusion module and feature enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 254-260.
[18] 江志伟, 傅晓锦, 陈文彬, 等. 基于轻量化YOLOv8的无人机对绝缘子缺陷检测[J]. 计算机与现代化, 2025(7): 9-14.
JIANG Z W, FU X J, CHEN W B, et al. Drone-based insulator defect detection using lightweight YOLOv8[J]. Computer and Modernization, 2025(7): 9-14.
[19] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722.
[20] OUANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
[21] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Computer Science and Technology, 2022, 16(5): 1025-1042.
[22] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/YOLOv5: v7.0 - YOLOv5 SOTA realtime instance segmentation[EB/OL]. (2022) [2024-03-01]. https://doi.org/10.5281/zenodo.3908559.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475.
[24] Wang C Y, Yeh I H, Mark Liao H Y. Yolov9: Learning what you want to learn using programmable gradient information[C]//European Conference on Computer Vision. Springer, Cham, 2025: 1-21.
[25] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: Learning what you want to learn using programmable gradient information[C]// Proceedings of the European Conference on Computer Vision. Cham, Switzerland: Springer, 2024: 1-21.
[26] ROSS T Y, DOLLÁR G. Focal loss for dense object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2980-2988.
[27] LIU S H, WU T H, GAO X, et al. RTMDet: an empirical study of designing real-time object detectors[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023: 11134-11144.
[28] Zou X, Wu C, Liu H, et al. Improved ResNet-50 model for identifying defects on wood surfaces[J]. Signal, Image and Video Processing, 2023, 17(6): 3119-3126.
[29] Zhu W, Zhang H, Zhang C, et al. Surface defect detection and classification of steel using an efficient Swin Transformer[J]. Advanced Engineering Informatics, 2023, 57: 102061.
[30] Yu C, Chen X. Railway rutting defects detection based on improved RT-DETR[J]. Journal of Real-Time Image Processing, 2024, 21(4): 146.
|