[1] A. Abdusalomov, S. Umirzakova, K. Tashev, N. Egamberdiev, G. Belalova, A. Meliboev, I. Atadjanov, Z. Temirov, and Y. I. Cho, “Ai-driven uav surveillance for agricultural fire safety,” Fire, vol. 8, no. 4, p. 142, 2025.
[2] S. Zhou, L. Yang, H. Liu, C. Zhou, J. Liu, Y. Wang, S. Zhao, and K. Wang, “Improved yolo for long range detection of small drones,” Scientific Reports, vol. 15, no. 1, p. 12280, 2025.
[3] C. Sun, A. B. Azman, Z. Wang, X. Gao, and K. Ding, “Yolo-up: A high-throughput pest detection model for dense cotton crops utilizing uav-captured visible light imagery,” IEEE Access, 2025.
[4] A. J. Moshayedi, Z. Wang, M. Sharifdoust, A. S. Khoojine, W. Zhang, A. Kolahdooz, and J. Hu, “Smart farming solutions: A user-friendly gui for maize tassel estimation using yolo with dynamic and fixed labelling, featuring video support,” IEEE Access, 2025.
[5] X. Lin, Y. Niu, X. Yu, Z. Fan, J. Zhuang, and A.-M. Zou, “Paying more attention on backgrounds: Background-centric attention for uav detection,” Neural Networks, vol. 185, p. 107182, 2025.
[6] Y. Xu, J. Li, Y. Dong, and X. Zhang, “Survey of development of yolo object detection algorithms,” J. Front. Comput. Sci. Technol, vol. 18, pp. 2221–2239, 2024.
[7] M. Chao, C. Peng, L. Yun, C. Zhang, H. Wang, and Z. Chen, “A lightweight small object detection model for uav images based on deep semantic integration,” Scientific Reports, vol. 15, no. 1, p. 31888, 2025.
[8] XU Yanwei, LI Jun, DONG Yuanfang, et al. Survey of Development of YOLO Object Detection Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238
[9] Xiang Jiahao, Xu Huiying, Xu Guangping, et al. MECW-YOLO: A Small Target Detection Algorithm for UAV Perspective Based on Improved YOLOv8 [J/OL]. Computer Engineering and Science, 1-12 [2025-03-20]. http://kns.cnki.net/kcms/detail/43.1258.TP.20241225.1106.008.html.
[10] He Zhixuan, Chen Lili, Wang Xiang, et al. DMF-YOLOv11: Target Detection Algorithm for UAV Images Based on Improved YOLOv11n[J/OL]. Computer Engineering and Applications, 1-14 [2025-04-07]. http://kns.cnki.net/kcms/detail/11.2127.tp.20250403.2136.016.html.
[11] S. Qi, X. Song, T. Shang, X. Hu, and K. Han, “Msfe-yolo: An improved yolov8 network for object detection on drone view,” IEEE Geoscience and Remote Sensing Letters, 2024.
[12] Q. Fan, Y. Li, M. Deveci, K. Zhong, and S. Kadry, “Lud-yolo: A novel lightweight object detection network for unmanned aerial vehicle,” Information Sciences, vol. 686, p. 121366, 2025.
[13] C. Wei and W. Wang, “Rfag-yolo: A receptive field attention-guided yolo network for small-object detection in uav images,” Sensors, vol. 25, no. 7, p. 2193, 2025.
[14] G. Zhang, Y. Peng, and J. Li, “Yolo-mars: An enhanced yolov8n for small object detection in uav aerial imagery,”Sensors, vol. 25, no. 8, p. 2534, 2025.
[15] Y. Liu, Q. Ye, L. Sun, and Z. Wu, “Sod-yolov8n: Small object detection in remote sensing images based on yolov8n,” IEEE Geoscience and Remote Sensing Letters, 2025.
[16] Zhang B, Wang Z, Lv M, et al. RPDet: a re-parameterized efficient object detection network for UAV edge platforms[J]. Journal of Real-Time Image Processing, 2025, 22(3): 122.
[17] Yang X, Liu C, Han J. Reparameterized underwater object detection network improved by cone-rod cell module and wiou loss[J]. Complex & Intelligent Systems, 2024, 10(5): 7183-7198.
[18] J. Yang, S. Liu, J. Wu, X. Su, N. Hai, and X. Huang, “Pinwheel-shaped convolution and scale-based dynamic loss for infrared small target detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, no. 9, 2025, pp. 9202–9210.
[19] G. Xu, W. Liao, X. Zhang, C. Li, X. He, and X. Wu, “Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation,” Pattern recognition, vol. 143, p. 109819, 2023.
[20] W. Liu, H. Lu, H. Fu, and Z. Cao, “Learning to upsample by learning to sample,” in Proceedings of the IEEE/CVF international conference on computer vision, 2023, pp. 6027–6037.
[21] D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang et al., “Visdrone-det2019: The vision meets drone object detection in image challenge results,” in Proceedings of the IEEE/CVF international conference on computer vision workshops, 2019, pp. 0–0.
[22] J. Wang, W. Yang, H. Guo, R. Zhang, and G.-S. Xia, “Tiny object detection in aerial images,” in 2020 25th international conference on pattern recognition (ICPR). IEEE, 2021, pp. 3791–3798.
[23] S. Qiao, L.-C. Chen, and A. Yuille, “Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 10 213–10 224.
[24] J. Wang, C. Xu, W. Yang, and L. Yu, “A normalized gaussian wasserstein distance for tiny object detection,” arXiv preprint arXiv:2110.13389, 2021.
[25] J. Wu, Z. Pan, B. Lei, and Y. Hu, “Fsanet: Feature-and-spatial-aligned network for tiny object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.
[26] M. Ma and H. Pang, “Sp-yolov8s: An improved yolov8s model for remote sensing image tiny object detection,” applied sciences, vol. 13, no. 14, p. 8161, 2023.
[27] 邓宇辉,邓月明,何鑫.基于多尺度特征融合的空对地密集小目标检测算法[J/OL].计算机工程,1-17[2025-10-08].https://doi.org/10.19678/j.issn.1000-3428.0252144.
Y. Deng, Y. Deng, and X. He, "An Air-to-Ground Dense Small Object Detection Algorithm Based on Multi-Scale Feature Fusion," Computer Engineering, pp. 1-17, 2025. [Online]. Available: https://doi.org/10.19678/j.issn.1000-3428.0252144
|