[1] SUDMANT P H, RAUSCH T, GARDNER E J, et al. An integrated map of structural variation in 2,504 human genomes[J]. Nature, 2015, 526(7571): 75-81.
[2] CHAISSON M J P, HUDDLESTON J, DENNIS M Y, et al. Resolving the complexity of the human genome using single-molecule sequencing[J]. Nature, 2015, 517(7536): 608-611.
[3] KARCZEWSKI K J, FRANCIOLI L C, TIAO G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans[J]. Nature, 2020, 581(7809): 434-443.
[4] 1000 Genomes Project Consortium. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68.
[5] LUPSKI J R. Structural variation mutagenesis of the human genome: Impact on disease and evolution[J]. Environmental and Molecular Mutagenesis, 2015, 56(5): 419-436.
[6] STANKIEWICZ P, LUPSKI J R. Structural variation in the human genome and its role in disease[J]. Annual Review of Medicine, 2010, 61(1): 437-455.
[7] XING Y H, BAI Z, LIU C X, et al. Research progress of long noncoding RNA in China[J]. IUBMB life, 2016, 68(11): 887-893.
[8] DIXON J R, SELVARAJ S, YUE F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 2012, 485(7398): 376-380.
[9] KEMP S, ORSINI J J, EBBERINK M S, et al. VUS: Variant of uncertain significance or very unclear situation?[J]. Molecular Genetics and Metabolism, 2023, 140(1-2): 107678.
[10] BADIE C, KABACIK S, BALAGURUNATHAN Y, et al. Laboratory intercomparison of gene expression assays[J]. Radiation research, 2013, 180(2): 138-148.
[11] GOMES D H F, MEDEIROS I G, PETTA T B, et al. DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants[J]. BMC bioinformatics, 2025, 26(1): 101.
[12] 杨金晶,李成,孙啸.人类基因组结构变异检测方法[J].基因组学与应用生物学,2019,38(3):1048-1057.
YANG J J, LI C, SUN X. Methods for detecting structural variations in the human genome [J]. Genomics and Applied Biology, 2019,38(3):1048-1057.
[13] SHARO A G, HU Z, SUNYAEV S R, et al. StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants[J]. The American Journal of Human Genetics, 2022, 109(2): 195-209.
[14] ZHANG L, SHI J, OUYANG J, et al. X-CNV: genome-wide prediction of the pathogenicity of copy number variations[J]. Genome Medicine, 2021, 13(1): 132.
[15] LIU X, GU L, HAO C, et al. Systematic assessment of structural variant annotation tools for genomic interpretation[J]. Life Science Alliance, 2025, 8(3): 1-13.
[16] 何永蜀,张闻,杨照青.人类基因组结构变异[J].遗传,2009,31(8):771-778.
HE Y S, ZHANG W, YANG Z Q. Structural variations in the human genome [J]. Heredity, 2009,31(8):771-778.
[17] CHAISSON M J P, SANDERS A D, ZHAO X, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes[J]. Nature communications, 2019, 10(1): 1784.
[18] AKDEMIR K C, LE V T, CHANDRAN S, et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer[J]. Nature genetics, 2020, 52(3): 294-305.
[19] COLLINS R L, BRAND H, KARCZEWSKI K J, et al. A structural variation reference for medical and population genetics[J]. Nature, 2020, 581(7809): 444-451.
[20] LI Y, ROBERTS N D, WALA J A, et al. Patterns of somatic structural variation in human cancer genomes[J]. Nature, 2020, 578(7793): 112-121.
[21] GONG J, SUN H, WANG K, et al. Long-read sequencing of 945 Han individuals identifies structural variants associated with phenotypic diversity and disease susceptibility[J]. Nature Communications, 2025, 16(1): 1494.
[22] HO S S, URBAN A E, MILLS R E. Structural variation in the sequencing era[J]. Nature Reviews Genetics, 2020, 21(3): 171-189.
[23] PENG Z, ZHOU W, FU W, et al. Correlation between frequency of non-allelic homologous recombination and homology properties: evidence from homology-mediated CNV mutations in the human genome[J]. Human molecular genetics, 2015, 24(5): 1225-1233.
[24] VAN BREE E J, GUIMARÃES R L F P, LUNDBERG M, et al. A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci[J]. Genome research, 2022, 32(4): 656-670.
[25] SPIELMANN M, LUPIÁÑEZ D G, MUNDLOS S. Structural variation in the 3D genome[J]. Nature Reviews Genetics, 2018, 19(7): 453-467.
[26] 杨浩,姜丹,方铭.一种基于二代测序拷贝数变异检测的新方法[J].基因组学与应用生物学,2021,40(1):435-441.
YANG H, JIANG D, FANG M. A new method for copy number variation detection based on second-generation sequencing [J]. Genomics and Applied Biology, 2021,40(1):435-441.
[27] CESCHIN I, ALI T M, CARVALHO C V, et al. Balanced chromosomal rearrangement in a partner revealed after Preimplantation Genetic Testing for Aneuploidies (PGT-A)[J]. JBRA Assisted Reproduction, 2023, 27(2): 320.
[28] YANAI I. Quantifying gene duplication[J]. Nature Reviews Genetics, 2022, 23(4): 196-197.
[29] SALPIETRO V, MANOLE A, EFTHYMIOU S, et al. A review of copy number variants in inherited neuropathies[J]. Current genomics, 2018, 19(6): 412-419.
[30] PETROVSKI S, GUSSOW A B, WANG Q, et al. The intolerance of regulatory sequence to genetic variation predicts gene dosage sensitivity[J]. PLoS genetics, 2015, 11(9): e1005492.
[31] LUKHELE S T, RAS V, MULDER N. Workforce Development in Genomic Data Science for Health: A Worldview[J]. Annual Review of Genomics and Human Genetics, 2025, 26.
[32] XIE H, LIU F, ZHANG Y, et al. Neurodevelopmental trajectory and modifiers of 16p11. 2 microdeletion: A follow‐up study of four Chinese children carriers[J]. Molecular Genetics & Genomic Medicine, 2020, 8(11): e1485.
[33] ALAEI-MAHABADI B, BHADURY J, KARLSSON J W, et al. Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13768-13773.
[34] POBER B R. williams–Beuren syndrome[J]. New England Journal of Medicine, 2010, 362(3): 239-252.
[35] NIEBOER M M, NGUYEN L, DE RIDDER J. Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning[J]. Scientific Reports, 2021, 11(1): 14411.
[36] FEINGOLD E A, GOOD P J, GUYER M S, et al. The ENCODE (ENCyclopedia of DNA elements) project[J]. Science, 2004, 306(5696): 636-640.
[37] KUNDAJE A, MEULEMAN W, ERNST J, et al. Integrative analysis of 111 reference human epigenomes[J]. Nature, 2015, 518(7539): 317.
[38] LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic acids research, 2016, 44(D1): D862-D868.
[39] LAPPALAINEN I, LOPEZ J, SKIPPER L, et al. DbVar and DGVa: public archives for genomic structural variation[J]. Nucleic acids research, 2012, 41(D1): D936-D941.
[40] CHEN S, FRANCIOLI L C, GOODRICH J K, et al. A genomic mutational constraint map using variation in 76,156 human genomes[J]. Nature, 2024, 625(7993): 92-100.
[41] MACDONALD J R, ZIMAN R, YUEN R K C, et al. The Database of Genomic Variants: a curated collection of structural variation in the human genome[J]. Nucleic acids research, 2014, 42(D1): D986-D992.
[42] BRAGIN E, CHATZIMICHALI E A, WRIGHT C F, et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation[J]. Nucleic acids research, 2014, 42(D1): D993-D1000.
[43] ClinGen Consortium. The Clinical Genome Resource (ClinGen): advancing genomic knowledge through global curation[J]. Genetics in medicine: official journal of the American College of Medical Genetics, 2024, 27(1): 101228.
[44] PEREZ G, BARBER G P, BENET-PAGES A, et al. The UCSC genome browser database: 2025 update[J]. Nucleic acids research, 2025, 53(D1): D1243-D1249.
[45] Kalakoti Y, Sanjeev A, Wallner B. Prediction of structural variation[J]. Curr Opin Struct Biol. 2025 Apr;91:103003.
[46] GEOFFROY V, HERENGER Y, KRESS A, et al. AnnotSV: an integrated tool for structural variations annotation[J]. Bioinformatics, 2018, 34(20): 3572-3574.
[47] GEOFFROY V, LAMOUCHE J B, GUIGNARD T, et al. The AnnotSV webserver in 2023: updated visualization and ranking[J]. Nucleic acids research, 2023, 51(W1): W39-W45.
[48] GURBICH T A, ILINSKY V V. ClassifyCNV: a tool for clinical annotation of copy-number variants[J]. Scientific reports, 2020, 10(1): 20375.
[49] KUMAR S, HARMANCI A, VYTHEESWARAN J, et al. SVFX: a machine learning framework to quantify the pathogenicity of structural variants[J]. Genome biology, 2020, 21(1): 274.
[50] KLEINERT P, KIRCHER M. A framework to score the effects of structural variants in health and disease[J]. Genome research, 2022, 32(4): 766-777.
[51] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York: ACM, 2016: 785-794.
[52] GANEL L, ABEL H J, FINMETSEQ CONSORTIUM, et al. SVScore: an impact prediction tool for structural variation[J]. Bioinformatics, 2017, 33(7): 1083-1085.
[53] LV K, CHEN D, XIONG D, et al. dbCNV: deleteriousness-based model to predict pathogenicity of copy number variations[J]. BMC genomics, 2023, 24(1): 131.
[54] Liu Y, Zhang T, You N, et al. MAGPIE: accurate pathogenic prediction for multiple variant types using machine learning approach[J]. Genome Med. 2024 Jan 8;16(1):3.
[55] Zhou B, Arthur JG, Guo H, et al. Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders[J]. Cell. 2024 Nov 14;187(23):6687-6706.e25.
[56] Nazaretyan L, Rentzsch P, Kircher M. varCADD: large sets of standing genetic variation enable genome-wide pathogenicity prediction[J]. Genome Med. 2025 Aug 4;17(1):84.
[57] 黄雅琳.基于深度学习的基因组结构变异检测方法研究[D].哈尔滨:哈尔滨工业大学, 2020.
HUANG Y L. Research on genomic structural variation detection method based on deep learning[D]. Harbin: Harbin Institute of Technology, 2020.
[58] CAI L, WU Y, GAO J. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network[J]. BMC bioinformatics, 2019, 20(1): 665.
[59] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[J]. arXiv preprint arXiv:1603.04467, 2016.
[60] YE K, SCHULZ M H, LONG Q, et al. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads[J]. Bioinformatics, 2009, 25(21): 2865-2871.
[61] CHEN K, WALLIS J W, MCLELLAN M D, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation[J]. Nature methods, 2009, 6(9): 677-681.
[62] WANG K, LI M, HADLEY D, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[J]. Genome research, 2007, 17(11): 1665-1674.
[63] GLESSNER J T, HOU X, ZHONG C, et al. DeepCNV: a deep learning approach for authenticating copy number variations[J]. Briefings in bioinformatics, 2021, 22(5): bbaa381.
[64] Popic V, Rohlicek C, Cunial F, et al. Cue: a deep-learning framework for structural variant discovery and genotyping[J]. Nat Methods. 2023 Apr;20(4):559-568.
[65] Qiu T, Li J, Guo Y, et al. SVEA: an accurate model for structural variation detection using multi-channel image encoding and enhanced AlexNet architecture[J]. J Transl Med. 2025 Feb 22;23(1):221.
[66] Lin A, Xie B, Ye C, et al. Genos: A Human-Centric Genomic Foundation Model[J]. Gigascience. 2025 Oct 22:giaf132.
[67] 李晓晨,宋敏芳,刘扶芮.基于Transformer架构的大语言模型在生命科学中的应用与挑战[J].人工智能,2024,(5):44-52.
LI X C, SONG M F, LIU F R. Application and challenges of large language models based on transformer architecture in life sciences [J]. Artificial Intelligence, 2024,(5):44-52.
[68] LIANG L, CHEN Y, WANG T, et al. Genetic transformer: An innovative large language model driven approach for rapid and accurate identification of causative variants in rare genetic diseases[J]. medRxiv, 2024: 2024.07. 18.24310666.
[69] SMEDLEY D, JACOBSEN J O B, JÄGER M, et al. Next-generation diagnostics and disease-gene discovery with the Exomiser[J]. Nature protocols, 2015, 10(12): 2004-2015.
[70] BENEGAS G, ALBORS C, AW A J, et al. A DNA language model based on multispecies alignment predicts the effects of genome-wide variants[J]. Nature Biotechnology, 2025: 1-6.
[71] DALLA-TORRE H, GONZALEZ L, MENDOZA-REVILLA J, et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics[J]. Nature Methods, 2025, 22(2): 287-297.
[72] 杨海. 基因组结构变异预测算法研究[D]. 济南: 山东大学, 2019.
YANG H. Research on genomic structural variation prediction algorithm [D]. Jinan: Shandong University, 2019.
[73] 郭明,张雅如,朱丽,等.三维大语言模型研究进展与挑战[J/OL].计算机工程与应用,2025.
GUO M, ZHANG Y R, ZHU L, et al. Progress and challenges in the research of 3D large language models [J/OL]. Computer Engineering and Applications, 2025.
[74] ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications[J]. AI open, 2020, 1: 57-81.
|