[1] 蒋悦晗, 陈俊杰, 李洪均. 基于骨骼图神经网络的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(3): 34-47.
JIANG Y H, CHEN J J, LI H J. Review of human action recognition based on skeletal graph neural networks[J]. Computer Engineering and Applications, 2025, 61(3): 34-47.
[2] GAMMULLE H, AHMEDT-ARISTIZABAL D, DENMAN S, et al. Continuous human action recognition for human-machine interaction: a review[J]. ACM Computing Surveys, 2023, 55(13s): 1-38.
[3] SHARAFAT A, LATIF K, DENG T, et al. Excavator activity recognition under occlusion via multi-camera deep learning[J]. Results in Engineering, 2025, 29: 108611.
[4] CIORTUZ G, POUR H H, IRSHAD M T, et al. Machine learning models for wearable-based human activity recognition: a comparative study[J]. Neurocomputing, 2025, 650: 130911.
[5] IBRAHIM A, KHAN M Z, IMRAN M, et al. RadSpecFusion: Dynamic attention weighting for multi-radar human activity recognition[J]. Internet of Things, 2025, 33: 101682.
[6] LUO X, CHENG X, JIANG J, et al. Miniaturized millimeter-wave dual-band band-pass on-chip filter in 0.13-μm SiGe BiCMOS[J]. AEU-International Journal of Electronics and Communications, 2025, 189: 155591.
[7] 陈鑫, 叶宁, 徐康, 等. 基于EfficientNet模型的毫米波雷达人体行为识别[J]. 计算机技术与发展, 2022, 32(9): 134-141.
CHEN X, YE N, XU K, et al. FMCW radar human action recognition system based on EfficientNet model[J]. Computer Technology and Development, 2022, 32(9): 134-141.
[8] SHAO T, DU Z, LI C, et al. Fast human action recognition via millimeter wave radar point cloud sequences learning[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, New York, NY, USA: Association for Computing Machinery, 2024: 2024-2033.
[9] 李育臣, 张之江, 曾丹, 等. 基于毫米波雷达稀疏点云的人体行为识别方法[J]. 计算机测量与控制, 2024, 32(2): 198-205.
LI Y C, ZHANG Z J, ZENG D, et al. Sparse Point Cloud-Based human activity recognition using millimeter-wave radar[J]. Computer Measurement and Control, 2024, 32(2): 198-205.
[10] TAN T H, TIAN J H, SHARMA A K, et al. Human activity recognition based on deep learning and micro-doppler radar data[J]. Sensors, 2024, 24(8): 2530.
[11] KIM Y, MOON T. Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13(1): 8-12.
[12] HAN L, FENG C, HU X, et al. Space target recognition based on 4-D range–frequency–time–power radar data cube[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6181-6198.
[13] YAO H, YANG Z, CHU P, et al. Human learning behavior recognition in seated posture using millimeter-wave radar[C]//2025 IEEE International Workshop on Radio Frequency and Antenna Technologies (iWRF&AT), Shenzhen, China, IEEE, 2025: 333-338.
[14] 孙彦玺, 赵婉婉, 武东辉, 等. 基于卷积长短时记忆网络的人体行为识别研究[J]. 计算机工程, 2021, 47(10): 260-268.
SUN Y X, ZHAO W W, WU D H, et al. Research of human activity recognition based on convolutional long short-term memory network[J]. Computer Engineering, 2021, 47(10): 260-268.
[15] MIAZEK P, ŻMUDZIŃSKA A, KIERSZTYN A. Human behavior analysis using radar data: a survey[J]. IEEE Access, 2024, 12: 153188-153202.
[16] HUANG X, PATEL N, TSOI K. Application of mmWave radar sensor for people identification and classification[J]. Sensors, 2023, 23(8): 3873.
[17] DING Y, ZHANG S, TANG C G, et al. MASA-TCN: Multi-Anchor Space-Aware temporal convolutional neural networks for continuous and discrete EEG emotion recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(7): 3953-3964.
[18] WANG P X, ZHANG H C, CHENG S F, et al. A lightweight spatiotemporal graph dilated convolutional network for urban sensor state prediction[J]. Sustainable Cities and Society, 2024, 101: 105105.
[19] SHI C C, LIU S X. Human action recognition with transformer based on convolutional features[J]. Intelligent Decision Technologies, 2024, 18(2): 881-896.
[20] FANG C, WANG Y, ZHOU M, et al. End-to-End human motion recognition with multidomain dual attention transformer fusion network and millimeter-wave radar[J]. IEEE Transactions on Consumer Electronics, 2025, 71(2): 3252-3265.
[21] ZHAO Y N, GAO Q, JU Z J, et al. Sharing-net: Lightweight feedforward network for skeleton-based action recognition based on information sharing mechanism[J]. Pattern Recognition, 2024, 146: 110050.
[22] ZHANG Y Y, GAO M H. Indoor human activity dataset for millimeter-wave radar [DB/OL]. IEEE DataPort, 2025 [2025-12-30]. https://doi.org/10.21227/s481-0349.
[23] LEE H, KIM J, KO K, et al. Radar-Based road surface classification using Range-Fast Fourier transform learning models[J]. Sensors, 2025, 25(18): 5697.
[24] MODORANU I V, SAFARYAN M, MALINOVSKY G, et al. Microadam: Accurate adaptive optimization with low space overhead and provable convergence[J]. Advances in Neural Information Processing Systems, 2024, 37: 1-43.
[25] HU Y, TAO F, XU J J, et al. Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner[J]. Journal of Pharmaceutical Analysis, 2025, 15(6): 101267.
[26] DING F Q, LUO Z, ZHAO P J, et al. milliflow: Scene flow estimation on mmwave radar point cloud for human motion sensing[C]//European Conference on Computer Vision, Cham, Springer Nature Switzerland, 2024: 202-221.
[27] JIN C, MENG X, LI X, et al. Rodar: Robust gesture recognition based on mmWave radar under human activity interference[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11735-11749.
[28] SINGH A D, SANDHA S S, GARCIA L, et al. Radhar: Human activity recognition from point clouds generated through a millimeter-wave radar[C]//Proceedings of the 3rd ACM Workshop on Millimeter-wave Networks and Sensing Systems, New York, NY, USA: Association for Computing Machinery, 2019: 51-56.
|