[1] KAUR R, RODRIGUES T, KADIR N, et al. A Survey on Privacy Preservation Techniques in IoT Systems[J]. Sensors, 2025, 25(22): 6967-6967.
[2] 杨宇, 闫钰, 申芳, 等. 基于机器和深度学习的入侵检测综述[J]. 科学技术与工程, 2023, 23(18): 7607-7621.
YANG Y, YAN Y, SHEN F, et al. Review of intrusion detection based on machine and deep learning[J]. Science Technology and Engineering, 2023, 23(18): 7607-7621.
[3] 张志飞,王露漫.基于机器学习的网络入侵检测算法研究[J].计算机应用与软件, 2022, 39(10): 336-343.
ZHANG Z F, WANG L M. Research on network intrusion detection algorithm based on machine learning [J]. Computer Applications and Software, 2022, 39(10): 336-343.
[4] XIAO H G, LI Y W, XIU Y, et al. Development of outdoor swimmers detection system with small object detection method based on deep learning[J]. Multimedia Systems, 2022, 29(1): 323-332.
[5] PANAGIOTIS F, TAXIARXCHIS K, GEORGIOS K, et al. Intrusion detection in critical infrastructures: A literature review[J]. Smart Cities, 2021, 4(3): 1146-1157.
[6] 曾焕强,胡浩麟,林向伟,等. 深度神经网络压缩与加速综述[J]. 信号处理, 2022, 38(1): 183-194.
ZENG H Q, HU H L, LIN X W, et al. Deep Neural Network Compression and Acceleration:An Overview[J]. Journal of Signal Processing, 2022, 38(1): 183-194.
[7] SAFALDIN M, OTAIR M, ABUALIGAH L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 12(2): 1-18.
[8] FATIMA M, REHMAN O, ALI S, et al. ELIDS: Ensemble Feature Selection for Lightweight IDS against DDoS Attacks in Resource-Constrained IoT Environment[J]. Future Generation Computer Systems, 2024, 159: 172-187.
[9] AGURU A D, ERUKALA S B. A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health informatics systems using deep learning[J]. Information Sciences, 2024, 662: 120209.
[10] MUSHTAQ E, ZAMEER A, UMER M, et al. A two-stage intrusion detection system with auto-encoder and LSTMs[J]. Applied Soft Computing, 2022, 121: 108768.
[11] THAKKAR A, KIKANI N, GEDDAM R. Fusion of linear and non-linear dimensionality reduction techniques for feature reduction in LSTM-based Intrusion Detection System[J]. Applied Soft Computing, 2024, 154: 111378.
[12] WANG Z D, LI Z Y, HE D J, et al. A lightweight approach for network intrusion detection in industrial cyber-physical systems based on knowledge distillation and deep metric learning[J]. Expert Systems with Applications, 2022, 206:117671.
[13] XU C, ZHOU W, GE T, et al. BERT-of-Theseus: Compressing BERT by Progressive Module Replacing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 7859-7869.
[14] WANG Z D, LI J F, YANG Shuxin, et al. A lightweight IoT intrusion detection model based on improved BERT-of-Theseus[J]. Expert Systems with Applications, 2024, 238: 122045.
[15] BAEK J W, CHUNG K. Explainable Anomaly Detection Using Vision Transformer Based SVDD[J]. Computers, Materials & Continua, 2022, 74(3): 6573-6586.
[16] YU W, LUO M, ZHOU P, et al. Metaformer is actually what you need for vision[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10819-10829.
[17] PEZZELLE S, TAKMAZ E, FERNÁNDEZ R. Word representation learning in multimodal pre-trained transformers: An intrinsic evaluation[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 1563-1579.
[18] XI C M, WANG H, WANG X B. A novel multi-scale network intrusion detection model with transformer[J]. Scientific Reports, 2024, 14(1): 23239-23239.
[19] ZHU J, CHEN X, HE K, et al. Transformers without normalization[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 14901-14911.
[20] HOUKAN A, SAHOO A K. Dynamic Tanh–enhanced transformer architecture for scalable and high-accuracy cyber threat detection in IoT environments[J]. Engineering Research Express, 2025, 7(3): 035246.
[21] MOUSTAFA N. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets[J]. Sustainable Cities and Society, 2021, 72: 102994.
[22] BOOIJ T M, CHISCOP I, MEEUWISSEN E, et al. ToN_IoT: The Role of Heterogeneity and the Need for Standardization of Features and Attack Types in IoT Network Intrusion Data Sets[J]. IEEE Internet of Things Journal, 2022, 9(1): 485-496.
[23] SASI T, LASHKARI A H, LU R, et al. An efficient self attention-based 1D-CNN-LSTM network for IoT attack detection and identification using network traffic[J]. Journal of Information and Intelligence, 2024.
[24] NACK E A, MCKENZIE M C, BASTIAN N D. ACI-IoT-2023: A robust dataset for internet of things network security analysis[C]//MILCOM 2024-2024 IEEE Military Communications Conference (MILCOM). IEEE, 2024: 1-6.
[25] THASEEN I S, MOHANRAJ V, RAMACHANDRAN S, et al. A hadoop based framework integrating machine learning classifiers for anomaly detection in the internet of things[J]. Electronics, 2021, 10(16): 1955.
[26] TELIKANI A, et al. Industrial IoT intrusion detection via evolutionary cost-sensitive learning and fog computing[J]. IEEE Internet of Things Journal, 2022, 9(22): 23260-23271.
[27] NGUYEN T A, LE L T, NGUYEN T D, et al. Federated PCA on Grassmann Manifold for IoT Anomaly Detection[J]. IEEE/ACM Transactions on Networking, 2024, 32(05): 4456-4471.
[28] MARY D S, DHAS L J S, DEEPA A R, et al. Network intrusion detection: An optimized deep learning approach using big data analytics[J]. Expert Systems with Applications, 2024, 251: 123919.
[29] SHARMA A, BABBAR H. Analyzing Anomalies in IoT Networks using Machine Learning Solutions with ACI-IoT-2023 Network Traffic Dataset[C]//2024 Asian Conference on Intelligent Technologies (ACOIT). IEEE, 2024: 1-5.
[30] LI Z Y, YAO W B. A two stage lightweight approach for intrusion detection in Internet of Things[J]. Expert Systems with Applications, 2024, 257: 124965.
[31] WANG Z, CHEN H, YANG S, et al. A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization[J]. PeerJ Computer Science, 2023, 9: e1569.
[32] BENADDI H, JOUHARI M, ELHARROUSS O. A lightweight hybrid approach for intrusion detection systems using a chi-square feature selection approach in IoT[J]. Internet of Things, 2025: 101624.
|