[1] 邬江兴.网络空间内生安全发展范式[J].中国科学:信息科学, 2022, 第52卷(02): 189-204.
Wu J X. Development paradigms of cyberspace endogenous safety and security[J]. Scientia Sinica (Informationis), 2022, 52(02): 189-204.
[2] 邬江兴.内生安全赋能网络弹性工程[M]. 北京: 科学出版社, 2023.
Wu J X. Cyber Resilience System Engineering Empowered by Endogenous Security and Safety[M]. Beijing: Science Press, 2023.
[3] 宋克, 刘勤让, 魏帅, 等. 基于拟态防御的以太网交换机内生安全体系结构[J]. 通信学报, 2020, 第41卷(5): 22-30.
Song K, Liu Q R, Wei S, et al., Endogenous security architecture of Ethernet switch based on mimic defense[J]. Journal on Communications, 2020, 41(5): 22-30.
[4] 郭威, 谢光伟, 张帆, 等. 一种分布式存储系统拟态化架构设计与实现[J].计算机工程, 2020, 第46卷(6):12-19.
Guo W, Xie G W, Zhang F, et al., Design and Implementation of a Mimic Architecture for Distributed Storage System[J]. Computer Engineering, 2020, 46(6):12-19.
[5] 于洪, 兰巨龙, 欧阳玲. 内生安全微控制器设计与实现[J]. 信息网络安全, 2025, 25(3): 415-424.
Yu H, Lan J L, OuYang L. Endogenous Secure Microcontroller Design and Implementation[J]. Netinfo Security, 2025, 25(3): 415-424.
[6] Han Z, Yu W, Hao L, et al., Intelligent Dynamic Heterogeneous Redundancy Architecture for IoT Systems[J]. China Communications, 2024, 21(7): 291-306.
[7] Wang C, Yu H, Wei S, et al., Dynamic First Access Isolation Cache to Eliminate Reuse-Based Cache Side Channel Attacks[J]. Journal of Circuits, Systems and Computers, 2023, 32(02): 2350026:1-2350026:23.
[8] Zhang F, Chen X, Huang W, et al., Harnessing dynamic heterogeneous redundancy to empower deep learning safety and security. Security and Safety, 2024, 3(4): 2024011:1--2024011:27.
[9] 金梁,楼洋明,孙小丽,等.6G无线内生安全理念与构想[J].中国科学:信息科学, 2023, 第53卷(02): 344-364.
Jin L, Lou Y M, Sun X L, et al., Concept and vision of 6G wireless endogenous safety and security[J]. Scientia Sinica (Informationis), 2023, 53(02): 344-364.
[10] Cai N, He G. Multi-cloud Resource Scheduling Intelligent System with Endogenous Security[J]. Electronic Research Archive, 2024, 32(2): 1380-1405.
[11] Ren Q, Hu T, Wu J, et al., Multipath Resilient Routing for Endogenous Secure Software Defined Networks[J]. Computer Networks, 2021, 194(2): 108-134.
[12] 郑秋华, 胡程楠, 崔婷婷, 等. 一种基于概率分析的DHR模型安全性分析方法[J]. 电子学报, 2021, 第49卷(8): 1586-1598.
Zheng Q H, Hu C N, Cui T T, et al., A Security Analysis Approach for Dynamic Heterogeneous Redundancy Model Based on Probability Analysis[J]. Chinese Journal of Electronics, 2021, 49(8): 1586-1598.
[13] Xu J. Research on Cyberspace Mimic Defense Based on Dynamic Heterogeneous Redundancy Mechanism[J]. Journal of Computer and Communications, 2021, 9(07): 1-7.
[14] Ouyang L, Song K, Zhang W J, et al., Microcontroller design based on dynamic heterogeneous redundancy architecture[J]. China Communications. 2023, 20(9): 144 -159.
[15] 于洪, 刘勤让, 魏帅,等. 高可靠信息系统非相似冗余架构中的执行体同步技术[J]. 电子与信息学报, 2024, 第46卷(5): 2122-2136.
Yu H, Liu Q R, Wei S, et al., Executer Synchronization in Highly Reliable Information System with Dissimilar Redundancy Architecture[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2122-2136.
[16] 杨汶佼, 刘星宇, 张奕, 等. 一种针对拟态工业控制器的裁决及调度方法[J]. 信息安全研究, 2022, 第8卷(6): 534-544.
Yang W J, liu X Y, Zhang Y, et al., A Method for Arbitration and Scheduling of Mimicry Industrial Controllers[J]. Journal of Information Security Research, 2022, 8(6): 534-544.
[17] 马博林, 张铮, 邵昱文, 等. KMBox: 基于 Linux 内核改造的进程 异构冗余执行系统[J]. 信息安全学报, 2023, 第8卷(1): 14-25.
Ma B L, Zhang Z, Shao Y W, et al., KMBox: Linux Kernel-based Heterogeneous Redundant Execution System Designed for Processes [J]. Journal of Cyber Security, 2023, 8(1): 14-25.
[18] 易星辰, 魏恒峰, 黄宇等. PaxosStore中共识协议TPaxos的推导、规约与精化[J]. 软件学报, 2020, 第31卷(8): 2336-2361.
Yi X C, Wei H F, Huang Y, et al., TPaxos Consensus Protocol in PaxosStore: Derivation, Specification, and Refinement[J]. Journal of Software, 2020, 31(8): 2336-2361.
[19] 王日宏, 周航, 徐泉清等. 用于联盟链的非拜占庭容错共识算法[J]. 计算机科学, 2021, 第48卷(9): 317-323.
Wang R H, Zhou H, Xu Q Q, et al., Non-byzantine Fault Tolerance Consensus Algorithm for Consortium Blockchain[J].
Computer Science, 2021, 48(9): 317-323.
[20] 邬江兴.论网络空间内生安全问题及对策[J].中国科学:信息科学, 2022, 第52卷(10): 1929-1937.
Wu J X. Cyberspace’s endogenous safety and security problem and the countermeasures[J]. Scientia Sinica (Informationis), 2022, 52(10): 1929–1937,
[21] Guo W, Wu Z X, Zhang F, et al., Scheduling Sequence Control Method Based on Sliding Window in Cyberspace Mimic Defense[J]. IEEE Access, 2020, 8:1517-1533.
[22] Guo W, Zhang F, Wu Z X, et al., Confidence Skewing Problem and Its Correction Method in Mimic Arbitration Mechanism[J].Chinese Journal of Electronics, 2020, 29(03):155-161.
[23] 欧阳玲, 贺磊, 宋克, 等. 基于编码信道理论的拟态括号设计方法[J]. 信息工程大学学报, 2021, 第22卷(4): 456-461.
Ouyang L, He L, Song K, et al., Design method of mimicry brackets based on coding channel Theory[J]. Journal of Information Engineering University, 2021, 22(4): 456-461.
[24] 朱绪全,江逸茗,马海龙,等.拟态防御体系OSPF协议研究及分析[J].计算机工程与科学, 2023, 45(2):204-214.
Zhu X Q, Jiang Y M, Ma H L, et al., Research and analysis of OSPF protocol in mimic defense system[J]. Computer Engineering and Science, 2023, 45(2):204-214.
[25] Hussein Z, Salama M A, El-Rahman S A. Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms[J]. Cybersecurity, 2023, 6(1) : 2523-3246.
[26] Yu H, Zhu Z Z, Pei X, et al. A synchronization monitor design in dynamic heterogeneous redundancy architecture[J]. Chinese Journal of Electronics, vol. x, no. x, pp. 1–10, xxxx. DOI: 10.23919/cje.2024.00.169
[27] 刘子敬, 张铮, 席睿成, 等. CON-MVX: 一种基于容器技术的多变体执行系统[J]. 信息安全学报, 2024, 第9卷(2):47-58.
Liu Z J, Zhang Z, Xi R C, et al. CON-MVX: A Multi-Variant Execution System Based on Container Technology[J]. Journal of Cyber Security, 2024, 9(2): 47-58.
[28] 周文, 董贵山, 张汝云, 等. 一种基于国产密码与拟态防御融合的一体化内生安全防护架构[J].信息安全与通信保密, 2023(1):50-59.
Zhou W, Dong G S, ZHANG R Y, et al. An Integrated Endogenous Security Protection Architecture Based on the Fusion of Domestic Cryptography and Mimic Defense[J]. Information Security and Communications Privacy, 2023(1):50-59.
|