[1] Lin W, Zhang Z, Ren G, et al. MGCN: Mamba-integrated spatiotemporal graph convolutional network for long-term traffic forecasting[J]. Knowledge-Based Systems, 2025, 309: 112875.
[2] Jin G, Liang Y, Fang Y, et al. Spatio-temporal graph neural networks for predictive learning in urban computing: A survey[J]. IEEE transactions on knowledge and data engineering, 2023, 36(10): 5388-5408.
[3] Song C, Lin Y, Guo S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(01): 914-921.
[4] Luo X, Zhu C, Zhang D, et al. Stg4traffic: A survey and benchmark of spatial-temporal graph neural networks for traffic prediction[J]. arXiv preprint arXiv:2307.00495, 2023.
[5] Geng X, Li Y, Wang L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 3656-3663.
[6] Zhang Q, Chang J, Meng G, et al. Spatio-temporal graph structure learning for traffic forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(01): 1177-1185.
[7] Lu Z, Zhou C, Wu J, et al. Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs[J]. KSII Transactions on Internet & Information Systems, 2016, 10(1).
[8] Kumar S V, Vanajakshi L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 21.
[9] Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression[J]. IEEE transactions on intelligent transportation systems, 2004, 5(4): 276-281.
[10] Park D, Rilett L R. Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer‐Aided Civil and Infrastructure Engineering, 1999, 14(5): 357-367.
[11] Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270.
[12] Graves A. Long short-term memory[J]. Supervised sequence labelling with recurrent neural networks, 2012: 37-45.
[13] Cho K, van Merrienboer B, Gülçehre Ç, et al. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing .2014: 1724-1734.
[14] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//Proceedings of the 6th International Conference on Learning Representations. 2018.
[15] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 3634–3640.
[16] 陈海涵,吴国栋,李景霞,等。基于注意力机制的深度学习推荐研究进展 [J]. 计算机工程与科学,2021, 43 (2): 370-380.Chen H H, Wu G D, Li J X, et al. Research Progress of Deep Learning-based Recommendation with Attention Mechanism[J]. Computer Engineering & Science, 2021, 43(2): 370-380.
[17] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[18] Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415-5428.
[19] Jiang J, Han C, Zhao W X, et al. Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction[C]//Proceedings of the AAAI conference on artificial intelligence. 2023, 37(4): 4365-4373.
[20] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
[21] Fang S, Ji W, Xiang S, et al. PreSTNet: Pre-trained spatio-temporal network for traffic forecasting[J]. Information Fusion, 2024, 106: 102241.
[22] Wu Z, Pan S, Long G, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 1907-1913.
[23] Jagadish H V, Gehrke J, Labrinidis A, et al. Big data and its technical challenges[J]. Communications of the ACM, 2014, 57(7): 86-94.
[24] Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in neural information processing systems, 2020, 33: 17804-17815.
[25] Xu M, Dai W, Liu C, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. arXiv preprint arXiv:2001.02908, 2020.
[26] Fang Z, Long Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 364-373.
[27] Cao C Y, Bao Y X, Hou Y, et al. Traffic speed prediction network based on multi-view spatio-temporal graph convolution network[J]. Computers and Electrical Engineering, 2025, 127: 110558.
|