作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (1): 31-33.

• 博士论文 • 上一篇    下一篇

核主成分回归方法在电力负荷中期预测中的应用

刘遵雄1,2,况志军2,刘觉夫2   

  1. 1. 西安交通大学电信学院,西安710049;2. 华东交通大学信息工程学院,南昌330013
  • 出版日期:2006-01-05 发布日期:2006-01-05

Application of Kernel Principal Component Regression in Mid-term Load Forecasting

LIU Zunxiong1,2, KUANG Zhijun2, LIU Juefu2   

  1. 1. School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049;2. School of Information Engineering, East China Jiaotong University, Nanchang 330013
  • Online:2006-01-05 Published:2006-01-05

摘要: 在分析核主成分回归原理及其与最小二乘方法关系的基础上,针对电力负荷中期预测的影响变量间存在着的非线性关系信息,提出使用主成分回归方法进行电力负荷中期预测,一定程度上解决了误差传播的问题,系统的预测精度得到了提高。使用核主成分回归进行了模型实验,探讨了模型训练样本选取、数据处理、参数选择和训练方法等方面的问题,并对实验结果进行了分析讨论。实验表明,在模型不很复杂的情况下,可以使用直接搜索的方法有效地设置应提取的非线性主成分个数p 的值。

关键词: 核主成分回归;中期预测;模型实验

Abstract: After investigating the mechanism of KPCR and its relation to least square method, this paper proposes mid-term load forecasting with KPCR, where error propagation exists. There are strong no-linear relations between influence factors in mid-term load forecasting. The simulation experiments are done with KPCR, good prediction accuracy is obtained. The paper puts emphasis on the matters about training sample selection, data disposition, model parameter selection, etc. Some explanations are presented on experiment results. In the experiment with simple model, the principal component number p can be set in feature space by way of direct searching

Key words: Kernel principal component; Mid-term load-forecasting; Model experiments