作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (4): 211-213.

• 人工智能及识别技术 • 上一篇    下一篇

一种改进的线性判别分析法在人脸识别中的应用

覃志祥1,丁立新2,简国强1,秦前清3,李元香1,2   

  1. 1. 武汉大学计算机学院,武汉 430079;2. 武汉大学软件工程与国家重点实验室,武汉 430079;3. 武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
  • 出版日期:2006-02-20 发布日期:2006-02-20

Face Recognition Based on a New Improved LDA Method

QIN Zhixiang1, DING Lixin2, JIAN Guoqiang1, QIN Qianqing3, LI Yuanxiang1,2   

  1. 1. Shcool of Computer, Wuhan University, Wuhan 430079 ; 2. National Key Laboratory for Software Engineering, Wuhan University, Wuhan 430079; 3. National Key Laboratory for Information Egineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079
  • Online:2006-02-20 Published:2006-02-20

摘要: 提出了一种新的基于LDA 的人脸识别算法。该方法重新定义了样本的类间散布矩阵,在原始的定义基础上增加了一种径向基函数(RBF)调节类间距离,使得在选择投影方向时能更好地分开各类样本;同时该方法在类间散布矩阵与类内散布矩阵的特征分解的基础上,通过变换求出符合Fisher 准则的最优投影方向,可以证明这样得到的投影方向同时具有正交性与统计不相关性。通过ORL 人脸数据库的数值实验,表明了该算法比传统算法有更好的性能。

关键词: 线性判别分析;样本类间离散度;样本类内离散度;特征提取;人脸识别

Abstract: This paper introduces a new approach of improved-LDA to overcome the drawbacks existing in the traditional PCA and LDA methods. It redefines the between-class scatter matrix by adding a radical basis function(RBF). Therefore, it can work better than the traditional methods. At the same time, a optimal set of uncorrelated discriminant vectors have been founded on the basis of the eigen decomposition of between-class scatter matrix and within-class scatter matrix. The numerical experiments on facial database of ORL show this method achieves better performance of face recognition than traditional methods.

Key words: Linear discriminant analysis(LDA); Between-class scatter; Within-class scatter; Feature extraction; Face recognition