作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (6): 25-27.

• 博士论文 • 上一篇    下一篇

基于多层感知机和 RBF 转换函数的混合神经网络

武妍 1,2,王守觉2,3   

  1. 1. 同济大学计算机科学与工程系,上海 200092;2. 同济大学半导体与信息技术研究所,上海 200092;3. 中国科学院半导体研究所神经网络实验室,北京 100083
  • 出版日期:2006-03-20 发布日期:2006-03-20

Hybrid Neural Network Based on Transfer Functions of Multilayer Perception and Radial Basis Function

WU Yan1,2, WANG Shoujue2,3   

  1. 1. Dept. of Computer Science and Engineering, Tongji University, Shanghai 200092; 2. Institute of Semiconductors and Information Technology,Tongji University, Shanghai 200092; 3. Lab of Artificial Neural Networks, Institute of Semiconductors, CAS, Beijing 100083
  • Online:2006-03-20 Published:2006-03-20

摘要: 为了更有效地优化前向神经网络的求解能力,提出了一种新的综合的转换函数,将多层感知机和RBF 神经网络更有机地结合起来,以产生灵活的决策边界。在此基础上推导出了相应的学习算法。并通过对实际的模式分类问题的仿真,将文中的方法与带动量项BP算法、CSFN、RBF 等算法进行了比较,验证了其有效性。

关键词: 转换函数;径向基函数;多层感知机;混合网络;学习算法

Abstract: In order to effectively optimizing the solution of feed-forward neural network, a new general transfer function is proposed that effectively unifies the inputs of multilayer perception and radial basis function to provide flexible decision border. A new algorithm based on gradient descent and error propagation is proposed. Several pattern classification example simulations are made to verify the validity of the proposed algorithm by comparing the proposed transfer function and learning algorithm with BP algorithm adding momentum term, CSFN and RBF

Key words: Transfer function; Radial basis function; Multilayer perception; Hybrid network; Learning algorithm