摘要: 基于求解实优化问题时粒子群算法优于遗传算法这一事实,在基于遗传算法的K-均值聚类算法的基础上,给出了一种基于粒子群优化算法的聚类方法。实验结果显示,基于粒子群优化算法的聚类方法在收敛速度方面明显优于基于遗传算法的聚类方法。
关键词:
粒子群优化算法;聚类分析;K-均值算法
Abstract: It is proved by experiments that the particle swarm optimization is superior to the genetic algorithm while solving the problems of real optimization. A kind of particle swarm optimization cluster method is provided on the basis of the genetic algorithm K-means cluster method. The experimental result shows that the particle swarm optimization cluster method is obviously superior to the genetic algorithm K-means cluster method since it has faster convergence rate.
Key words:
Particle swarm optimization; Clustering; K-means algorithm
刘向东,沙秋夫,刘勇奎,段晓东. 基于粒子群优化算法的聚类分析[J]. 计算机工程, 2006, 32(6): 201-202,217.
LIU Xiangdong, SHA Qiufu, LIU Yongkui, DUAN Xiaodong. Analysis of Classification Using Particle Swarm Optimization[J]. Computer Engineering, 2006, 32(6): 201-202,217.