作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (8): 37-39.

• 博士论文 • 上一篇    下一篇

基于 BPSO-SVM 的网络入侵特征选择和检测

高海华 1,杨辉华1,2,王行愚1   

  1. 1. 华东理工大学信息科学与工程学院,上海 200237;2. 桂林电子工业学院计算机系,桂林 541004
  • 出版日期:2006-04-20 发布日期:2006-04-20

Selection and Detection of Network Intrusion Feature Based on BPSO-SVM

GAO Haihua1, YANG Huihua1,2, WANG Xingyu1   

  1. 1. College of Information Science and Engineering, East China University of Science & Technology, Shanghai 200237;2. Department of Computer, Guilin University of Electronic Technology, Guilin 541004
  • Online:2006-04-20 Published:2006-04-20

摘要: 采用改进的二进制粒子群优化进行入侵特征子集选择,粒子群中每个粒子代表一个选择的特征子集,结合支持向量机使用该特征子集所对应的数据集进行分类,正确分类结果作为该粒子的适应度,通过粒子群优化实现最优入侵特征选择。改进的BPSO 方法中通过引入粒子群依概率整体变异来避免陷入局部最优,同时采用粒子禁忌搜索列表来扩大粒子搜索范围和避免重复计算;SVM 中采用基于粒度的网格搜索来获得最优核参数。最后用KDD 99 标准数据集进行实验研究,结果表明该方法能获得满意的检测效果。

关键词: 二进制粒子群优化;支持向量机;异常检测;特征选择

Abstract: In the proposed algorithm, every particle in the swarm stands for a selected subset of features. The fitness of particle is defined as the correct classification percentage by SVM using a training set whose patterns are represented using only the selected subset of features. Thus through particle swarm optimization to achieve intrusion feature selection and classification. A probabilistic mutation of BPSO is adopted to avoid local optimal and a tabu search table is used to enlarge particle swarm’s search space and avoid repeated computation. The results of experiment demonstrate that applying a hybrid of BPSO-SVM in intrusion detection System can be an effective way for feature selection and detecting intrusions via using the data sets of KDD cup 99.

Key words: Binary particle swarm optimization(BPSO); Support vector machines(SVM); Anomaly detection; Feature selection