作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (9): 175-177.

• 人工智能及识别技术 • 上一篇    下一篇

基于分层抽样的模拟禁忌混合智能优化算法 TS II

周子康1,杨衡 1,唐万生2   

  1. 1. 中国科学院数学与系统科学研究院,北京 100080;2. 天津大学系统工程研究所,天津 300072
  • 出版日期:2006-05-05 发布日期:2006-05-05

Tabu Search with Stochastic Simulation of Stratified Sampling Intelligently Integrated (TS II)

ZHOU Zikang1, YANG Heng1, TANG Wansheng2   

  1. 1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080;2. Institute of Systems Engineering, Tianjin University, Tianjin 300072
  • Online:2006-05-05 Published:2006-05-05

摘要: 将分层抽样随机模拟与禁忌搜索结合,构造了TS II 模拟禁忌混合智能优化算法。随机模拟采用缩减方差、加速收敛的分层抽样技术,保证抽样遍布于整个搜索空间,避免禁忌搜索路径往返重复,克服禁忌搜索对初始解的依赖,算法同时使用禁忌表与希望表,将分散搜索与集中搜索相结合,增强算法的并行处理能力,提高寻优的效率与精度。Benchmark 问题评测结果显示出了该算法的有效性。

关键词: 禁忌搜索算法;随机模拟;分层抽样;混合优化算法

Abstract: Analyzing fundamentals of stochastic simulation and Tabu search, this paper proposes Tabu search with stochastic simulation of stratified sampling intelligently integrated (TS II). Stratified sampling technique, promising list and scatter search are adopted to ensure that samples spread all over the search space and parallel ability be boosted up during the grabbling process to improve the optimization efficiency and precision,which are revealed in performance evaluation of Benchmark problems

Key words: Tabu search; Stochastic simulation; Stratified sampling technique; Hybrid optimization algorithm