作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (22): 192-194. doi: 10.3969/j.issn.1000-3428.2010.22.069

• 人工智能及识别技术 • 上一篇    下一篇

基于免疫RBF神经网络的逆运动学求解

魏 娟1a,杨恢先1b,谢海霞2   

  1. (1. 湘潭大学 a. 信息工程学院;b. 材料与光电物理学院,湖南 湘潭 411105;2. 琼州学院物理系,海南 五指山 572200)
  • 出版日期:2010-11-20 发布日期:2010-11-18
  • 作者简介:魏 娟(1984-),女,硕士研究生,主研方向:控制系统计算机辅助设计;杨恢先,教授;谢海霞,助教、硕士
  • 基金资助:
    海南省自然科学基金资助项目(60897);海南省教育厅基金资助项目(HJ2009-135);量子工程与微纳能源技术湖南省普通高校重点实验室开放课题基金资助项目

Solution of Inverse Kinematics Based on Immune RBF Neural Network

WEI Juan1a, YANG Hui-xian1b, XIE Hai-xia2   

  1. (1a. College of Information Engineering; 1b. Faculty of Material and Photoelectronic Physics, Xiangtan University, Xiangtan 411105, China; 2. Department of Physics, Qiongzhou University, Wuzhishan 572200, China)
  • Online:2010-11-20 Published:2010-11-18

摘要: 求解机械臂逆运动学问题可以采用神经网络来建立逆运动学模型,通过遗传算法或BP算法训练神经网络的权值从而得到问题的解,在求解精度和收敛速度上有待进一步改进。采用人工免疫原理对RBF网络训练数据集的泛化能力在线调整隐层结构,生成RBF网络隐层。当网络结构确定时,采用递推最小二乘法确定网络连接权值。由此对神经网络的网络结构和连接权进行自适应调整和学习。通过仿真可以看出,用免疫原理训练的神经网络收敛速度快,泛化能力强,可大幅提高机械臂逆运动学求解精度。

关键词: 机械臂, 免疫原理, RBF神经网络, 逆运动学求解

Abstract: Neural network is applied to solving inverse kinematics of manipulator, whose weight is got through genetic algorithm or back propagated algorithm. These methods need to be further improved in solving accuracy and convergence rate. Through the generalization ability of artificial immune principle to RBF network data set training, the structure of hidden layer is adjusted and generated. When the structure is determined, recursive least squares method is used to determine weight value of network output, so as to adjust and learn the structure and weight value of the neural network self-adaptively. The simulation results verify that the trained neural network by the immune principle has better generalization ability and fast convergence. It can solve accuracy of manipulator inverse kinematics.

Key words: manipulator, immune principle, RBF neural network, solution of inverse kinematics

中图分类号: