作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (17): 188-190. doi: 10.3969/j.issn.1000-3428.2011.17.063

• 人工智能及识别技术 • 上一篇    下一篇

P2P分层流媒体数据分配的粒子群遗传算法

黄继海,杨志宏,赵建勋   

  1. (中州大学信息工程学院,郑州 450044)
  • 收稿日期:2011-03-03 出版日期:2011-09-05 发布日期:2011-09-05
  • 作者简介:黄继海(1977-),男,讲师、CCF高级会员,主研方向:人工智能,分布式计算系统;杨志宏,副教授;赵建勋,讲师
  • 基金资助:
    河南省科技攻关计划基金资助项目(102102210247)

Particle Swarm Genetic Algorithm of Data Allocation in P2P Layered Streaming Media

HUANG Ji-hai, YANG Zhi-hong, ZHAO Jian-xun   

  1. (Information Engineering College, Zhongzhou University, Zhengzhou 450044, China)
  • Received:2011-03-03 Online:2011-09-05 Published:2011-09-05

摘要: 现有P2P分层流媒体中的数据分配算法是基于贪婪思想的确定性启发式算法,不能得到全局最优解。为此,提出一种基于备选数据块编码方式的粒子群遗传算法。定义备选数据块,建立问题的无约束整数规划模型。仿真实验表明,该算法在优化效果上能比现有算法提高5%~25%。

关键词: 对等网络, 分层流媒体, 数据分配, NP完全问题, 粒子群遗传算法

Abstract: Data allocation in layered P2P streaming media is proved to be a NP-complete problem. The existing algorithm is a heuristic algorithm based on the greedy idea, which can not get the global solution. In order to develop a new algorithm for this problem, it defines the concept of data blocks for choosing, sets up a mathematic model of integer programming without restriction, and proposes a novel Particle Swarm Genetic Algorithm(PSGA) based on the encoding manner of Data Blocks for Choosing. Simulation demonstrates that the proposed PSGA’s performance improves 5%~25% than that of the existing algorithm.

Key words: Peer-to-Peer(P2P) network, layered streaming media, data allocation, NP-complete problem, Particle Swarm Genetic Algorithm (PSGA)

中图分类号: