作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (17): 191-193. doi: 10.3969/j.issn.1000-3428.2011.17.064

• 图形图像处理 • 上一篇    下一篇

基于蚁群优化的图像边缘检测算法

张 健1a, 2,何 坤1b,郑秀清1b,周激流1b   

  1. (1. 四川大学 a. 电子信息学院;b. 计算机学院,成都 610065;2. 四川师范大学物理与电子工程学院,成都 610066)
  • 收稿日期:2011-03-14 出版日期:2011-09-05 发布日期:2011-09-05
  • 作者简介:张 健(1975-),女,讲师、博士研究生,主研方向:数字图像处理,计算智能;何 坤,讲师、博士;郑秀清,高级工程师、博士研究生;周激流,教授、博士、博士生导师
  • 基金资助:
    国家自然科学基金资助项目(60971109)

Image Edge Detection Algorithm Based on Ant Colony Optimization

ZHANG Jian  1a, 2, HE Kun  1b, ZHENG Xiu-qing  1b, ZHOU Ji-liu  1b   

  1. (1a. School of Electronics and Information Engineering; 1b. College of Computer Science, Sichuan University, Chengdu 610065, China; 2. School of Physics and Electronics Engineering, Sichuan Normal University, Chengdu 610066, China)
  • Received:2011-03-14 Online:2011-09-05 Published:2011-09-05

摘要: 为提高图像边缘检测的精度与抗噪性能,提出一种基于蚁群优化的图像边缘检测算法。将图像像素梯度值和像素圆形邻域统计均值的相对差共同作为蚁群的启发信息,引导蚁群搜索图像边缘。实验结果表明,该算法能最大限度地保留边缘细节,并能抑制噪声和纹理,具有较好的鲁棒性。

关键词: 边缘检测, 蚁群优化, 特征提取, 梯度, 统计均值

Abstract: In order to improve the image edge detection accuracy and noise performance, this paper proposes an image edge detection algorithm based on ant colony optimization. The value of pixel gradient and the relative difference of statistical means of the pixel’s circle neighborhood are combined to be the heuristic information which can guide ant’s searching. Experimental results show that the edge detected by the proposed algorithm is robust to noise and texture, and contains most of the edge details.

Key words: edge detection, ant colony optimization, feature extraction, gradient, statistical mean

中图分类号: