作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (23): 186-188,207.

• 人工智能及识别技术 • 上一篇    下一篇

基于自适应神经模糊推理系统的视频烟雾检测

王 涛a,刘 渊b,谢振平b   

  1. (江南大学 a. 物联网工程学院;b. 数字媒体学院,江苏 无锡 214122)
  • 收稿日期:2011-06-13 出版日期:2011-12-05 发布日期:2011-12-05
  • 作者简介:王 涛(1987-),男,硕士研究生,主研方向:模式识别,视频图像处理;刘 渊,教授;谢振平,博士
  • 基金资助:
    江苏省科技支撑计划基金资助项目(BE2008009)

Video Smoke Detection Based on Adaptive Neuro-fuzzy Inference System

WANG Tao  a, LIU Yuan  b, XIE Zhen-ping  b   

  1. (a. School of Internet of Things Engineering; b. School of Digital Media, Jiangnan University, Wuxi 214122, China)
  • Received:2011-06-13 Online:2011-12-05 Published:2011-12-05

摘要: 提出一种基于自适应神经模糊推理系统的视频烟雾检测算法。从视频图像中提取烟雾特征,采用减法聚类确定模糊规则数,建立初始模糊系统。通过神经网络的自学习机制调整前提参数和结论参数,确定模糊推理规则。实验结果表明,与传统BP神经网络算法及支持向量机算法相比,该算法具有较优的ROC曲线特性。

关键词: 视频烟雾检测, 自适应神经模糊推理系统, 减法聚类, 烟雾特征分析

Abstract: This paper presents a video smoke detection algorithm based on Adaptive Neuro-fuzzy Inference System(ANFIS). The smoke features are extracted from video sequences, and the subtractive clustering is introduced to confirm the fuzzy rule number. The premise parameters and the consequent parameters are updated by hybrid learning rule. The fuzzy inference rules are obtained. Experimental results show that compared with the traditional BP neural network algorithm and Support Vector Machine(SVM) algorithm, the new algorithm has better performance on Receiver Operating Characteristic(ROC) curve.

Key words: video smoke detection, Adaptive Neuro-fuzzy Inference System(ANFIS), subtractive clustering, smoke feature analysis

中图分类号: