作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

城镇森林交界域视频烟雾检测算法

李诚,唐李洋,潘李伟   

  1. (中国电子科技集团公司第三十八研究所 安徽省公共安全应急信息技术重点实验室,合肥 230028)
  • 收稿日期:2016-12-12 出版日期:2018-01-15 发布日期:2018-01-15
  • 作者简介:李诚(1987—),男,工程师、博士,主研方向为计算机视觉、深度学习;唐李洋,工程师、博士;潘李伟,副高级工程师、博士。
  • 基金资助:
    国家重点研发计划重点专项“重大危险源的识别评价、监测预警与管控”(2016YFC0800105);国家自然科学基金重大研究计划“基于大数据分析的犯罪模式挖掘与犯罪预测研究”(91546103)。

Video Smoke Detection Algorithm for Wildland-urban Interface

LI Cheng,TANG Liyang,PAN Liwei   

  1. (Key Laboratory of Public Safety Emergency Information Technology of Anhui Province,The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230028,China)
  • Received:2016-12-12 Online:2018-01-15 Published:2018-01-15

摘要:

针对城镇森林交界域火灾烟雾视频检测准确率低问题,提出一种融合多项图像特征和深度学习的视频烟雾检测算法。通过ViBe方法提取前景变化区域,根据烟雾模糊特征和角点信息排除部分纹理细节较明显的区域。在此基础上,以颜色特征为判据进一步缩小检测范围,使用累积帧差法排除运动刚体的干扰,利用深度学习模型识别目标是否为烟雾。采用级联分类器的方式设计整体算法,并使用并行计算技术进行实现。实验结果和工程案例表明,该算法能够实现城镇森林交界域火灾早期烟雾的精准识别。

关键词: 视频烟雾检测, 城镇森林交界域, 背景建模, 颜色特征, 深度学习

Abstract:

In order to improve the precision rate of video smoke detection for wildland-urban interface,a video smoke detection algorithm based on multiple image features and deep learning is proposed.Firstly,ViBe(Visual Background extrator)method is applied to extract the moving or changing foreground areas in surveillance videos and image corner information is used to exclude the disturb from objects with detail texture.Secondly,color space features are utilized to narrow the check area for smoke.Thirdly,the cumulated difference image is calculated to find and eliminate the influence of rigid bodies.At last,the deep learning model is used to recognize the filtered image area.The algorithm is designed in the framework of cascade classifier and implemented by using parallel computing technology.Experimental results and project cases verify that the proposed algorithm is significant for improving the precision rate of smoke detection for wildland-urban interface.

Key words: video smoke detection, wildland-urban interface, background modeling, color feature, deep learning

中图分类号: