作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (11): 147-149,152. doi: 10.3969/j.issn.1000-3428.2012.11.045

• 人工智能及识别技术 • 上一篇    下一篇

智能公交中基于条件映射的到站时间预测算法

陈圣兵1,李正茂1,王晓峰1,2   

  1. (1. 合肥学院计算机科学与技术系网络与智能信息处理重点实验室,合肥 230601; 2. 中国科学院合肥智能机械研究所智能计算实验室,合肥 230031)
  • 收稿日期:2011-10-12 出版日期:2012-06-05 发布日期:2012-06-05
  • 作者简介:陈圣兵(1973-),男,博士,主研方向:人工智能; 李正茂,硕士;王晓峰,博士
  • 基金资助:
    国家自然科学基金资助项目(61005010);合肥学院人才科研基金资助项目(11RC06)

Arrival Time Prediction Algorithm for Intelligent Public Transportation Based on Condition Mapping

CHEN Sheng-bing 1, LI Zheng-mao 1, WANG Xiao-feng 1,2   

  1. (1. Key Lab of Network and Intelligent Information Processing, Department of Computer Science and Technology, Hefei University, Hefei 230601, China; 2. Intelligent Computing Lab, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China)
  • Received:2011-10-12 Online:2012-06-05 Published:2012-06-05

摘要: 针对传统公交车到站时间预测算法精度较低的问题,提出一种利用条件映射进行时间预测的模型。在兼顾拟合度和泛化能力的同时,模型直接将交通信息映射为到站所需时间。采用基于范例的推理技术,给出条件映射预测模型的实现算法,并用实测数据对预测算法进行比较。实验结果表明,在正常时段和高峰期,该算法的预测精度分别为100%和85%,平均误差分别为13 s和30.5 s。

关键词: 智能公交, 到站时间, 预测算法, 条件映射, 基于范例的推理

Abstract: In view of the shortcomings of existing Bus Arrival Time Prediction(BATP) model, this paper proposes a novel BATP model based on condition mapping. The model maps traffic information to arrival time directly, which makes it have the advantage of simpleness, high degree of fitting and strong generalization ability. It proposes an algorithm for the model based on Case-based Reasoning(CBR), and testes the algorithms with actual data. Experiments in the peak and normal times show that the prediction accuracy of the algorithm is 100% and 85%, and the average deviation is 13 seconds and 30.5 seconds respectively.

Key words: intelligent public transportation, arrival time, prediction algorithm, condition mapping, Case-based Reasoning(CBR)

中图分类号: