作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (17): 174-177. doi: 10.3969/j.issn.1000-3428.2012.17.048

• 人工智能及识别技术 • 上一篇    下一篇

一种改进的多尺度Harris特征点检测方法

徐贤锋a,檀结庆a,b   

  1. (合肥工业大学 a. 计算机与信息学院;b. 应用数学研究所,合肥 230009)
  • 收稿日期:2011-11-23 修回日期:2011-12-29 出版日期:2012-09-05 发布日期:2012-09-03
  • 作者简介:徐贤锋(1987-),男,硕士研究生,主研方向:数字图像处理;檀结庆,教授、博士生导师
  • 基金资助:
    国家自然科学基金资助项目“几何造型与图像处理中的非线性方法研究”(61070227);国家自然科学基金资助项目“非线性几何设计与计算”(60773043)

An Improved Multi-scale Harris Feature Point Detection Method

XU Xian-feng a, TAN Jie-qing a,b   

  1. (a. College of Computer and Information; b. Institute of Applied Mathematics, Hefei University of Technology, Hefei 230009, China)
  • Received:2011-11-23 Revised:2011-12-29 Online:2012-09-05 Published:2012-09-03

摘要: 多尺度Harris方法检查到的特征点存在很多冗余点,虽然Harris-Laplace方法可以除去一些冗余点,但是还会出现一个局部结构内存在多个特征点的情况或一个特征点代表多个不同尺度的局部结构。为此,提出一种改进的方法,在检测多尺度Harris特征点时进行跟踪分组,使代表同一个局部结构的特征点被分为一组,用归一化的Laplace函数去除冗余点,再利用点的度量值选出最能代表该局部结构的特征点。实验结果证明,该方法能够有效去除冗余点,在模糊和旋转变换时性能优于Harris-Laplace方法,具有尺度不变的特性。

关键词: Harris特征点, Harris-Laplace算子, 尺度空间, LOG函数, 跟踪分组

Abstract: There are many redundant feature points by multi-scale Harris method to check. Although Harris-Laplace method can remove some redundant points, there still are more than one feature points in a local structure or a few different scale local structures represented a feature points. This paper present an improved method of checking Harris-Laplace feature points, that track and group it while checking feature points so that some feature points that represent the same local structure are divided into a group, then use Laplace function to remove redundant feature points and the corner measure to select the most representative of the local structure of the corner. It is proved by experiments that the method can effectively remove redundant feature points. While fuzzy and rotation transforming, the method is better than Harris-Laplace, and has a scale-invariant features.

Key words: Harris feature point, Harris-Laplace operator, scale space, LOG function, tracking group

中图分类号: