作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (17): 178-181. doi: 10.3969/j.issn.1000-3428.2012.17.049

• 人工智能及识别技术 • 上一篇    下一篇

基于模拟退火的差分变异群搜索优化算法

郑慧杰1,2,刘 弘1,2,郑向伟1,2,孙玉灵1,2   

  1. (1. 山东师范大学信息科学与工程学院,济南 250014; 2. 山东省分布式计算机软件新技术重点实验室,济南 250014)
  • 收稿日期:2011-09-27 修回日期:2011-12-19 出版日期:2012-09-05 发布日期:2012-09-03
  • 作者简介:郑慧杰(1987-),女,硕士研究生,主研方向:进化计算,计算机辅助设计;刘 弘,教授、博士生导师;郑向伟,副教授、博士;孙玉灵,硕士研究生
  • 基金资助:
    国家自然科学基金资助项目(6097004);教育部博士点基金资助项目(20093704110002);山东省自然科学基金资助项目(ZR2010QL01)

Group Search Optimization Algorithm of Differential Variation Based on Simulated Annealing

ZHENG Hui-jie 1,2, LIU Hong 1,2, ZHENG Xiang-wei 1,2, SUN Yu-ling 1,2   

  1. (1. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; 2. Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan 250014, China)
  • Received:2011-09-27 Revised:2011-12-19 Online:2012-09-05 Published:2012-09-03

摘要: 标准群搜索优化算法易陷入局部最优。为此,引入模拟退火策略和差分进化算子,使算法跳出局部极值点,变异和迭代同时进 行,并保持前期搜索速度快的特性。测试结果证明,改进算法的全局收敛能力明显提高,个体具有良好的人工智能性,能够真实模拟群体行为。

关键词: 群搜索优化算法, 群体动画, 差分进化, 局部最优

Abstract: To reduce the possibility of falling into local optimum, metroplis rule and differential evolution operator is introdued in Group Search Optimization algorithm, which makes the variation of the algorithm get rid of the shackles of the local extreme advantage, maintain the pre-fast search feature, and improve global search capabilities. During varation and iterative, merit-based evolution improves optimization performance. Test results point that the ability to improve the global convergence of the algorithm is significantly improved, meanwhile, simulation results show that the individual has a good artificial intelligence, which can simulate group behavior toralistically.

Key words: Group Search Optimization(GSO) algorithm, group animation, Differential Evolution(DE), local optimum

中图分类号: