作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (18): 155-157. doi: 10.3969/j.issn.1000-3428.2012.18.042

• 人工智能及识别技术 • 上一篇    下一篇

结合禁忌搜索的改进粒子群优化算法

李勇刚,邓艳青   

  1. (中南大学信息科学与工程学院,长沙 410083)
  • 收稿日期:2011-09-20 修回日期:2011-12-26 出版日期:2012-09-20 发布日期:2012-09-18
  • 作者简介:李勇刚(1974-),男,副教授,主研方向:人工智能,智能搜索;邓艳青,硕士研究生
  • 基金资助:
    国家自然科学基金资助项目(61174133)

Improved Particle Swarm Optimization Algorithm with Tabu Search

LI Yong-gang, DENG Yan-qing   

  1. (School of Information Science and Engineering, Central South University, Changsha 410083, China)
  • Received:2011-09-20 Revised:2011-12-26 Online:2012-09-20 Published:2012-09-18

摘要: 为提高粒子群优化算法的全局搜索和局部开采能力,提出一种结合禁忌搜索(TS)的改进粒子群优化算法。在搜索过程中,以线性递增的概率对最优粒子实施随机扰动,在全局搜索收敛到一定程度后,引入TS算法进行局部搜索,使算法快速收敛到全局最优解。分析结果表明,该算法收敛精度较高,能有效克服早熟收敛问题。

关键词: 粒子群优化算法, 禁忌搜索, 随机扰动, 局部最优, 收敛精度

Abstract: To improve the global exploration and local exploitation ability of Particle Swarm Optimization(PSO) algorithm, an improved PSO algorithm integrated with Tabu Search(TS) is proposed. In PSO algorithm, optimal particle is perturbed with a linear increasing probability. When the global PSO algorithm converges to a certain degree, TS algorithm is used for local search of global optimum. Simulation results show that the convergence precision of the improved algorithm is very high, and can overcome premature convergence effectively.

Key words: Particle Swarm Optimization(PSO) algorithm, Tabu Search(TS), random perturbance, local optimum, convergence precision

中图分类号: