作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 移动互联与通信技术 • 上一篇    下一篇

社交网络中基于近似因子的自适应社区检测算法

阙建华   

  1. (咸阳师范学院数学与信息科学学院,陕西 咸阳 712000)
  • 收稿日期:2015-04-02 出版日期:2016-05-15 发布日期:2016-05-13
  • 作者简介:阙建华(1973-),女,讲师、硕士,主研方向为社交网络、无线传感器网络。
  • 基金资助:
    咸阳师范学院教改基金资助项目(201202011)。

Adaptive Community Detection Algorithm in Social Network Based on Approximation Factor

QUE Jianhua   

  1. (College of Mathematics and Information Science,Xianyang Normal University,Xianyang,Shaanxi 712000,China)
  • Received:2015-04-02 Online:2016-05-15 Published:2016-05-13

摘要: 针对现有社区检测算法复杂度高、运行速度慢等问题,以模块度最大化为优化目标,提出一种社区结构自适应检测算法。该算法具有幂律分布属性,能扩展至超大型网络,并且包含近似因子可保证被检测出的社区结构质量。在社区结构已知的合成网络和真实数据上的实验结果表明,该算法的检测性能优于FacetNet和Blondel等自适应检测算法。

关键词: 动态社交网络, 模块度, 社区检测, 幂律, 近似因子

Abstract: Existing community detection algorithms have higher complexity and lower speed.Aiming at this problem,an adaptive community structure detection algorithm in social network is proposed to maximize modularity.This algorithm has the advantages of power-law distribution property.It is scalable for very large network and possesses approximation factors to ensure the quality of its detected community structure.To certify the proposed algorithm,this paper conducts extensive experiments on both synthesized network with known community structures and real-world traces.Experimental results show that the detection performance of the proposed algorithm is better than other adaptive methods,like FacetNet and Blondel algorithms.

Key words: dynamic social network, modularity, community detection, power-law, approximation factor

中图分类号: