[1] AKOGLU L,MCGLOHON M,FALOUTSOS C.OddBall:spotting anomalies in weighted graphs[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining.Berlin,Germany:Springer,2010:410-421. [2] TSOURAKAKIS C E,BONCHI F,GIONIS A,et al.Denser than the densest subgraph:extracting optimal quasi-cliques with quality guarantees[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2013:104-112. [3] HE Chaobo,TANG Yong,LIU Hai,et al.Method for community mining integrating link and attribute information[J].Chinese Journal of Computers,2017,40(3):601-616.(in Chinese)贺超波,汤庸,刘海,等.一种集成链接和属性信息的社区挖掘方法[J].计算机学报,2017,40(3):601-616. [4] ZHOU Y,CHENG H,YU J X.Graph clustering based on structural/attribute similarities[J].Proceedings of the VLDB Endowment,2009,2(1):718-729. [5] HUANGX,CHENG H,YU J X.Dense community detection in multi-valued attributed networks[J].Information Sciences,2015,314:77-99. [6] XU Sen,LU Zhimao,GU Guochang.Two spectral algorithms for ensembling document clusters[J].Acta Automatica Sinica,2009,35(7):997-1002.(in Chinese)徐森,卢志茂,顾国昌.解决文本聚类集成问题的两个谱算法[J].自动化学报,2009,35(7):997-1002. [7] NEWMAN M E.Modularity and community structure in networks[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(23):8577-8582. [8] LEMAN A,TONG H H,BRENDAN M,et al.PICS:parameter-free identification of cohesive subgroups in large attributed graphs[C]//Proceedings of 2012 SIAM International Conference on Data Mining.[S.l.]:SIAM,2012:439-450. [9] MA Huifang,CHEN Haibo,ZHAO Weizhong,et al.Leveraging tag mean partition distance and social structure for overlapping microblog user community detection[J].Acta Electronica Sinica,2018,46(11):2612-2618.(in Chinese)马慧芳,陈海波,赵卫中,等.融合标签平均划分距离和结构关系的微博用户可重叠社区发现[J].电子学报,2018,46(11):2612-2618. [10] PEROZZI B,AKOGLU L,SÁNCHEZ P I.Focused clustering and outlier detection in large attributed graphs[C]//Proceedings of ACM International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:1346-1355. [11] BRYAN P,LEMAN A.Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of 2016 SIAM International Conference on Data Mining.[S.l.]:SIAM,2016:1-10. [12] LESKOVEC J,LANG K J,DASGUPTA A,et al.Statistical properties of community structure in large social and information networks[C]//Proceedings of the 17th International Conference on World Wide Web.New York,USA:ACM Press,2008:695-704. [13] GLEICH D F,SESHADHRI C.Vertex neighborhoods,low conductance cuts,and good seeds for local community methods[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:597-605. [14] ARNABOLDI V,CONTI M,PASSARELLA A,et al.Analysis of ego network structure in online social networks[C]//Proceedings of ASE/IEEE International Conference on Social Computing and ASE/IEEE International Conference on Privacy.Washington D.C.,USA:IEEE Press,2012:31-40. [15] LESKOVEC J,KLEINBERG J,FALOUTSOS C.Graphs over time:densification laws,shrinking diameters and possible explanations[C]//Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.New York,USA:ACM Press,2005:177-187. [16] MCGLOHON M,AKOGLU L,FALOUTSOS C.Weighted graphs and disconnected components:patterns and a generator[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:524-532. [17] YANG J,LESKOVEC J.Defining and evaluating network communities based on ground-truth[C]//Proceedings of ICDM'12.Washington D.C.,USA:IEEE Press,2012:745-754. [18] SILVA A,ZAKI M J.Mining attribute-structure correlated patterns in large attributed graphs[J].Proceedings of the VLDB Endowment,2012,5(5):466-477. [19] JIANG Shengyi,YANG Bohong,WANG Lianxi.An adaptive dynamic community detection algorithm based on incremental spectral clustering[J].Acta Automatica Sinica,2015,41(12):2017-2025.(in Chinese)蒋盛益,杨博泓,王连喜.一种基于增量式谱聚类的动态社区自适应发现算法[J].自动化学报,2015,41(12):2017-2025. [20] CLAUSET A,NEWMAN M E J,MOORE C.Finding community structure in very large networks[J].Physical Review E,2004,70(6):66-111. [21] KARPIS G,KUMAR V.A fast and high quality multilevel scheme for partitioning irregular graphs[J].SIAM Journal on Scientific Computing,1998,20(1):359-392. [22] YANG J,LESKOVEC J.Community-affiliation graph model for overlapping network community detection[C]//Proceedings of the 12th International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2012:1170-1175. [23] ANDERSEN R,LANG K J.Communities from seed sets[C]//Proceedings of WWW'06.New York,USA:ACM Press,2006:223-232. [24] PAN Jianfei,DONG Yihong,CHEN Huahui,et al.The overlapping community discovery algorithm based on compact structure[J].Acta Electronica Sinica,2019,47(1):145-152.(in Chinese)潘剑飞,董一鸿,陈华辉,等.基于结构紧密性的重叠社区发现算法[J].电子学报,2019,47(1):147-154. [25] COSCIA M,ROSSETTI G,GIANNOTTI F,et al.DEMON:a local-first discovery method for overlapping communities[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:615-623. [26] NOBLE C C,VCOOK D J.Graph-based anomaly detection[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2003:631-636. [27] GAO J,LIANG F,FAN W,et al.On community outliers and their efficient detection in information networks[C]//Proceedings of KDD'10.New York,USA:ACM Press,2010:813-822. [28] WU P,PAN L.Mining target attribute subspace and set of target communities in large attributed networks[EB/OL].[2019-02-04].https://arxiv.org/abs/1705.03590. [29] BROWN J N,BREWER H M,NICORA C D,at al.Protein and microRNA biomarkers from lavage,urine,and serum in military personnel evaluated for dyspnea[J].BMC Medical Genomics,2014,7(1):1-18. [30] DANON L,DUCH J,ARENAS A,et al.Community structure identification[M].[S.l.]:Mendeley,2005. |