作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (1): 211-212.

• 人工智能及识别技术 • 上一篇    下一篇

神经网络算法在股指预测中的应用

王光强,周佩玲   

  1. 中国科学技术大学电子科学技术系,合肥 230026
  • 出版日期:2006-01-05 发布日期:2006-01-05

Application of Neuron Network in Stock Index Predicton

WANG Guangqiang, ZHOU Peiling   

  1. Dept. of Electronic Science and Technology, University of Science & Technology of China, Hefei 230026
  • Online:2006-01-05 Published:2006-01-05

摘要: GMDH 是一种具有自组织特征的数据处理方法,适用于非线性系统的建模,股指是一种重要的金融数据,具有混沌特性。该文将相空间重构引入了GMDH 神经网络的建模中,并将之应用于道琼斯等股指的预测。同BP 神经网络方法及一阶局域预测法相比,GMDH获得了更好的预测效果。

关键词: 成组数据处理的神经网络算法;股指;预测

Abstract: The group method of data handling is a self-organizing data handling method, it is very apt to model non-linear system. The paper applies the revised GMDH method in prediction of the stock indexs which has chaotic character, comparing with the BackPropagation(BP) and the local prediction method of chaotic series with order one, it shows better results

Key words: Group method of data handling (GMDH); Stock index; Prediction