作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (13): 206-208.

• 人工智能及识别技术 • 上一篇    下一篇

进化优化小生境遗传算法控制参数的研究

袁丽华 1,2,黎明 1,2,李军华1,2   

  1. 1. 南京航空航天大学自动化工程学院,南京 210016;2. 南昌航空工业学院测控工程系,南昌 330034
  • 出版日期:2006-07-05 发布日期:2006-07-05

Research on Evolving Control Parameters in Niche Genetic Algorithm

YUAN Lihua1,2, LI Ming1,2, LI Junhua1,2   

  1. 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;2. Department of Test and Control Engineering, Nanchang Institute of Aeronautical Technology, Nanchang 330034
  • Online:2006-07-05 Published:2006-07-05

摘要: 小生境遗传算法与遗传算法相比,在求解多峰函数等最优化问题上具有显著的优势,但是小生境距离参数的确定缺乏理论依据,限制了小生境遗传算法的应用。该文提出了一种求解小生境之间距离参数的新方法——基于遗传算法进化优化小生境距离参数。根据多峰目标函数的具体情况,应用遗传算法随机寻优得到若干个最优值,由这些最优值的最小欧氏距离指导小生境距离参数的取值。依据此方法确定小生境之间的距离参数,应用小生境遗传算法成功求解了Shubert 多峰函数的所有全局最优值以及六峰值驼背数 Back Function 的所有局部极小值。

关键词: 遗传算法;小生境;多峰函数最优化

Abstract: Niche genetic algorithm is superior to genetic in multiple hump function optimization. However, there is lack of theory to determine theparameter of niche distance, so the algorithm’s application is limited. This paper presents a new approach to determine the niche distance parameter, which is based on genetic algorithm. According to the information of multiple hump object function, genetic algorithm is used to seek several global optimums, whose Euclidean distances are calculated. The niche distance is determined by the minimal Euclidean distance. This approach is successfully used in Shubert function optimization and six-hump camel back function optimization.

Key words: Genetic algorithm; Niche; Multiple hump function optimization