摘要: 神经网络的学习算法通常是采用梯度下降法,此方法容易陷入局部极小而得到次最优解。另外,对于有些应用来说,用于训练网络的样本的输入/输出数据无法精确给出,而只能以一定的范围的形式给出,这就给传统的神经网络带来了困难。该文提出了一种基于区间优化的神经网络学习算法,可以很好地解决上面所提到的传统神经网络学习算法的缺点。
关键词:
神经网络;学习算法;区间算法;全局优化
Abstract: Neural networks are usually trained using local gradient-based procedures. Such methods are frequently found sub-optimal solutions being trapped in local minima. In solving some application problems, the input/output data sets used to train a neural network may not be hundred percent precise but within certain range. It is difficult for the traditional neural network to solve such problems. A learning algorithm based on interval optimization is presented in this paper. The above disadvantages of the traditional learning algorithm are settled by using this method
Key words:
Neural network; Learning algorithm; Interval arithmetic; Global optimization
薛继伟,李耀辉,陈冬芳. 一种基于区间优化的神经网络学习算法[J]. 计算机工程, 2006, 32(4): 192-193,216.
XUE Jiwei, LI Yaohui, CHEN Dongfang. A Neural Network’s Learning Algorithm Based on Interval Optimization[J]. Computer Engineering, 2006, 32(4): 192-193,216.