作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (4): 192-193,216.

• 人工智能及识别技术 • 上一篇    下一篇

一种基于区间优化的神经网络学习算法

薛继伟 1,2,李耀辉2,陈冬芳1   

  1. 1. 大庆石油学院计算机科学与工程学院,大庆163318;2. 中国科学院成都计算机应用研究所,成都 610041
  • 出版日期:2006-02-20 发布日期:2006-02-20

A Neural Network’s Learning Algorithm Based on Interval Optimization

XUE Jiwei1,2, LI Yaohui2, CHEN Dongfang1   

  1. 1. Computer Science and Engineering College, Daqing Petroleum Institute, Daqing 163318;2. Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041
  • Online:2006-02-20 Published:2006-02-20

摘要: 神经网络的学习算法通常是采用梯度下降法,此方法容易陷入局部极小而得到次最优解。另外,对于有些应用来说,用于训练网络的样本的输入/输出数据无法精确给出,而只能以一定的范围的形式给出,这就给传统的神经网络带来了困难。该文提出了一种基于区间优化的神经网络学习算法,可以很好地解决上面所提到的传统神经网络学习算法的缺点。

关键词: 神经网络;学习算法;区间算法;全局优化

Abstract: Neural networks are usually trained using local gradient-based procedures. Such methods are frequently found sub-optimal solutions being trapped in local minima. In solving some application problems, the input/output data sets used to train a neural network may not be hundred percent precise but within certain range. It is difficult for the traditional neural network to solve such problems. A learning algorithm based on interval optimization is presented in this paper. The above disadvantages of the traditional learning algorithm are settled by using this method

Key words: Neural network; Learning algorithm; Interval arithmetic; Global optimization