作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (9): 167-169.

• 人工智能及识别技术 • 上一篇    下一篇

基于支持向量机的储粮害虫分类识别技术研究

甄 彤 1,2,范艳峰1   

  1. 1. 河南工业大学信息科学与工程学院,郑州450052; 2. 华中科技大学控制科学与工程系,武汉430074
  • 出版日期:2006-05-05 发布日期:2006-05-05

Research of Grain Pests Detection and Classification Based on SVM

ZHEN Tong1, 2, FAN Yanfeng1   

  1. 1. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450052;2. Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Online:2006-05-05 Published:2006-05-05

摘要: 介绍了采用三帧差分法实现谷物害虫图像恢复与提取的方法,利用图像的一阶灰度值直方图和图像的目标区域,自动提取静态储粮害虫图像的纹理等特征。针对于相对特征维数而言样本数很少的特点,提出利用多类SVM 分类器的方法实现对储粮害虫的快速鉴定和分类。实验结果表明,相比传统的神经网络,SVM 在有限样本情况下具有良好的泛化能力。

关键词: 三帧差分法;纹理特征;分类;人工神经网络;SVM

Abstract: A method of using three image differences to restore and extract the pest images is introduced. With reference to the fist order grayhistogram of pest images and their graphic target zones, a technique is provided to extract the texture eigenvalue. A multi-class support vector machine is proposed to implement the quick identification and classification of grain pests according to small amount samples compared to the dimensions. The test shows the better generalization ability of SVM than that of ANN under the conditions of limited training samples.

Key words: Three image difference; Texture eigenvalue; Classification; ANN; SVM