作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2008, Vol. 34 ›› Issue (13): 61-63.

• 软件技术与数据库 • 上一篇    下一篇

基于RSOM-Bayes的网页分类方法

冯和龙1,夏胜平2   

  1. (1. 湖南铁路科技职业技术学院实训中心,株洲 412000;2. 国防科学技术大学电子科学与工程学院ATR重点实验室,长沙410073)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-07-05 发布日期:2008-07-05

Web Page Classification Method Based on RSOM-Bayes

FENG He-long1, XIA Sheng-ping2   

  1. (1. Practical Centre, Hunan Railway College of Science and Technology, Zhuzhou 412000; 2. State Lab of Automatic Target Recognition, College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073)
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-07-05 Published:2008-07-05

摘要: 针对向量空间模型的网页分类计算复杂度高、不适用于大规模场景问题,该文采用RSOM和BAYES相结合的方法实现网页分类,利用RSOM 神经网络树实现网页特征词的自动索引,利用Bayes实现网页的自动分类。结果证明其在特征空间维数、检索效率、样本容量及检索精度方面都具有良好的性能。

关键词: 网页分类, RSOM神经网络树, Bayes方法, 向量空间模型

Abstract: Most Web page classification methods are based on Vector Space Model(VSM), but it is not suitable for large scale application background with bad computation complexity. A new automated text classification method based on RSOM neural net tree and Bayes method is proposed, RSOM neural net tree is used in Web page index and Bayes method is used in automated Web page classification. The excellent performance of this method has been tested in feature dimension, performance, capacity and accuracy.

Key words: Web page classification, RSOM neural net tree, Bayes method, Vector Space Model(VSM)

中图分类号: