作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (24): 90-92.

• 网络与通信 • 上一篇    下一篇

基于支持向量机分类的WSN节点定位算法

徐小卜a,王 勇a,陶晓玲b   

  1. (桂林电子科技大学 a. 计算机与控制学院;b. 网络中心,广西 桂林 541004)
  • 出版日期:2010-12-20 发布日期:2010-12-14
  • 作者简介:徐小卜(1985-),女,硕士研究生,主研方向:无线传感器网络;王 勇,教授、博士;陶晓玲,工程师、硕士
  • 基金资助:

    2009年广西研究生教育创新计划基金资助项目(20091059 50812M26);广西教育厅基金资助项目(200911LX111)

WSN Node Positioning Algorithm Based on Support Vector Classification

XU Xiao-bu a, WANG Yong a, TAO Xiao-ling b   

  1. (a. College of Computer and Control; b. Network Center, Guilin University of Electronic Technology, Guilin 541004, China)
  • Online:2010-12-20 Published:2010-12-14

摘要:

在研究接收信号强度指示(RSSI)定位和支持向量机分类(SVC)的基础上,提出无线传感器网络(WSN)节点定位算法。将WSN室内定位问题看作以节点RSSI值为特征量的多分类问题,将节点RSSI值转化为节点位置,利用SVC良好的泛化能力,实现符号定位和物理定位,达到较高的定位精度。实验结果表明,该算法的符号定位效果较好,当锚节点密度为20%时,可使98.19%的节点正确定位。

关键词: 无线传感器网络, 符号定位, 物理定位, 支持向量机分类, 接收信号强度指示

Abstract:

This paper proposes a Wireless Sensor Network(WSN) node positioning algorithm based on studying Received Signal Strength Indicator(RSSI) and Support Vector Classification(SVC). It considers node RSSI value as a multi-classification problem of characteristic quantity, converts RSSI into node position directly by SVC which has good generalization ability to realize symbolic positioning and physical positioning, and achieves a higher positioning accuracy. Experimental results show that the symbolic positioning effect of the algorithm is good, when the anchor node density is 20%, 98.19% of the nodes can get correct position.

Key words: Wireless Sensor Network(WSN), symbolic positioning, physical positioning, Support Vector Classification(SVC), Received Signal Strength Indicator(RSSI)

中图分类号: