摘要: 现有分布环签名方案大多基于双线性对运算或模指运算,计算效率不高。针对该问题,提出一种无双线性对运算和模指运算的无证书分布环签名方案,只进行椭圆曲线上的模乘运算。通过复杂度分析结果证明该方案是高效的,仅需2s+3t–2次模乘运算(t表示存取结构中子集的个数,s表示实际签名子集中成员的个数),并且若方案存取结构中所有子集的成员数均设为某一门限值,该方案即成为无证书门限环签名方案。
关键词:
分布环签名,
无证书,
计算性Diffie-Hellman问题,
无双线性对运算,
存取结构,
门限环签名
Abstract: The previous distributed ring signature schemes need bilinear pairing operation or exponent operation, and their computation efficiency is not high. For improving the efficient of operations, a new certificateless distributed ring signature scheme without bilinear pairings operation or exponent operation is proposed. The scheme only needs a modular multiplication on elliptic curves. The results of complexity analysis show that the proposed scheme is efficient, and it only needs 2s+3t–2 modular multiplication(t is the number of subsets of access structure, s is the number of members of actual signing subset). In addition, the scheme becomes a certificateless threshold ring signature scheme when the number of all subsets members of access structure is set to a certain threshold value.
Key words:
distributed ring signature,
certificateless,
Computational Diffie-Hellman Problem(CDHP),
operation without bilinear pairing,
access structure,
threshold ring signature
中图分类号:
张春生,苏本跃,姚绍文. 无双线性对的无证书分布环签名方案[J]. 计算机工程.
ZHANG Chun-sheng, SU Ben-yue, YAO Shao-wen. Certificateless Distributed Ring Signature Scheme Without Bilinear Pairing[J]. Computer Engineering.