参考文献
[1]JENSEN S,LIU X,YU Y,et al.Generation of Topic Evolution Trees from Heterogeneous Bibliographic Networks[J].Journal of Informetrics,2016,10(2):606-621.
[2]叶春蕾,冷伏海.基于社会网络分析的技术主题演化方法研究[J].情报理论与实践,2014,37(1):126-130.
[3]陈千,桂志国,郭鑫,等.基于特征本体的文本流主题演化[J].计算机应用,2015,35(2):456-460.
[4]MA J,SUN M,LI C,et al.Ontology Evolution Algorithm for Topic Information Collection[J].International Journal of Nonlinear Science,2014,18(1):86-91.
[5]BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003,32(3):993-1022.
[6]WANG Y,AGICHTEIN E,BENZI M.TM-LDA:Efficient Online Modeling of Latent Topic Transitions in Social Media[C]//Proceedings of ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:123-131.
[7]胡吉明,陈果.基于动态LDA主题模型的内容主题挖掘与演化[J].图书情报工作,2014,58(2):138-142.
[8]HOFFMAN M D,BLEI D M,BACH F R.Online Learning for Latent Dirichlet Allocation[J].Advances in Neural Information Processing Systems,2010,23(5):856-864.
[9]TEH Y W,JORDAN M I,BEAL M J,et al.Hierarchical Dirichlet Processes[J].Journal of the American Statistical Association,2006,101(476):1566-1581.
[10]BLEI D M,LAFFERTY J D.Dynamic Topic Models[C]// Proceedings of the 23rd International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2006:113-120.
[11]AHMED A,XING E P.Dynamic Non-parametric Mixture Models and the Recurrent Chinese Restaurant Process:with Applications to Evolutionary Clustering[C]//Proceedings of Siam International Conference on Data Mining.Atlanta,USA:SDM Press,2008:219-230.
[12]ZHANG J,SONG Y,ZHANG C,et al.Evolutionary Hierarchical Dirichlet Processes for Multiple Correlated Time-varying Corpora[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2010:1079-1088.
[13]HONG L,DOM B,GURUMURTHY S,et al.A Time-dependent Topic Model for Multiple Text Streams[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2011:832-840.
[14]方莹,黄河燕,辛欣,等.面向动态主题数的话题演化分析[J].中文信息学报,2014,28(3):142-149.
[15]FU X,LI J,YANG K,et al.Dynamic Online HDP Model for Discovering Evolutionary Topics from Chinese Social Texts[J].Neurocomputing,2015,171(C):412-424.
[16]张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主 题挖掘[J].计算机研究与发展,2011,48(10):1795-1802.
[17]刘少鹏,印鉴,欧阳佳,等.基于MB-HDP模型的微博主题挖掘[J].计算机学报,2015,38(7):1408-1419.
[18]FERGUSON T S.A Bayesian Analysis of Some Nonparametric Problems[J].Annals of Statistics,1973,1(2):209-230.
[19]周建英,王飞跃,曾大军.分层Dirichlet过程及其应用综述[J].自动化学报,2011,37(4):389-407.
[20]陈晓伟.基于主题爬虫与文本分类的微博资讯智能生成策略研究[D].武汉:华中科技大学,2013.
[21]张力生,年欢,宋辉,等.领域模型中关联语义的描述逻辑表示与应用[J].软件,2015(6):66-74.
[22]MENG X,WEI F,LIU X,et al.Entity-centric Topic-oriented Opinion Summarization in Twitter[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:379-387.
编辑吴云芳 |