[1] 孙玉洁,秦永彬.基于LDA模型的多角度个性化微博推荐算法[J].计算机工程,2017,43(4):177-182. SUN Y J,QIN Y B.Multi-angle personalized microblog recommendation algorithm based on LDA model[J].Computer Engineering,2017,43(4):177-182.(in Chinese) [2] HUANG R Z,YU G,WANG Z J,et al.Dirichlet process mixture model for document clustering with feature partition[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(8):1748-1759. [3] BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [4] QIANG J P,LI Y,YUAN Y H,et al.Short text clustering based on Pitman-Yor process mixture model[J].Applied Intelligence,2018,48(7):1802-1812. [5] YANG S,HUANG G,CAI B.Discovering topic representative terms for short text clustering[J].IEEE Access,2019,7:92037-92047. [6] JIN O,LIU N N,ZHAO K,et al.Transferring topical knowledge from auxiliary long texts for short text clustering[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2011:775-784. [7] YAN Y Y,HUANG R Z,MA C,et al.Improving document clustering for short texts by long documents via a Dirichlet multinomial allocation model[C]//Proceedings of Asia-Pacific Web(APWeb) and Web-Age Information Management(WAIM) Joint Conference on Web and Big Data.Berlin,Germany:Springer,2017:626-641. [8] 闫盈盈,黄瑞章,王瑞,等.一种长文本辅助短文本的文本理解方法[J].山东大学学报(工学版),2017,48(3):67-74. YAN Y Y,HUANG R Z,WANG R,et al.A document understanding method for short texts by auxiliary long documents[J].Journal of Shandong University(Engineering Science),2017,48(3):67-74.(in Chinese) [9] HONG L,DOM B,GURUMURTHY S,et al.A time-dependent topic model for multiple text streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2011:832-840. [10] ROSEN-ZVI M,GRIFFITHS T,STEYVERS M,et al.The author-topic model for authors and documents[C]//Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence.[S.l.]:AUAI Press,2004:487-494. [11] CHEN L,ZHANG H Z,JOSE J M,et al.Topic detection and tracking on heterogeneous information[J].Journal of Intelligent Information Systems,2018,51(1):115-137. [12] YANG Y,WANG F F,ZHANG J N,et al.A topic model for co-occurring normal documents and short texts[J].World Wide Web,2018,21(2):487-513. [13] QIANG J P,CHEN P,DING W,et al.Heterogeneous-length text topic modeling for reader-aware multi-document summarization[J].ACM Transactions on Knowledge Discovery from Data,2019,13(4):1-21. [14] SALOMATIN K,YANG Y,LAD A.Multi-field correlated topic modeling[C]//Proceedings of 2009 SIAM International Conference on Data Mining.[S.l.]:Society for Industrial and Applied Mathematics,2009:628-637. [15] BLEI D M,LAFFERTY J D.Correlated topic models[EB/OL].[2020-04-11].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=410BA922B13452F633E26A63E2B1D12A?doi=10.1.1.61.2352&rep=rep1&type=pdf. [16] 牛硕硕,柴小丽,李德启,等.一种基于神经网络与LDA的文本分类算法[J].计算机工程,2019,45(10):208-214. NIU S S,CHAI X L,LI D Q,et al. A text classification algorithm based on neural network and LDA[J].Computer Engineering,2019,45(10):208-214.(in Chinese) [17] GHOSH R,ASUR S.Mining information from heterogeneous sources:a topic modeling approach[J].Information,2017,8(3):79. [18] ZHANG J W,GEROW A,ALTOSAAR J,et al.Fast,flexible models for discovering topic correlation across weakly-related collections[EB/OL].[2020-04-11].https://arxiv.org/abs/1508.04562. [19] TEH Y W,JORDAN M I,BEAL M J,et al.Sharing clusters among related groups:hierarchical Dirichlet processes[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2005:1385-1392. [20] KIM S,TADESSE M G,VANNUCCI M.Variable selection in clustering via Dirichlet process mixture models[J].Biometrika,2006,93(4):877-893. [21] HEINRICH G.Parameter estimation for text analysis[EB/OL].[2020-04-11].https://www.researchgate.net/publication/228654366_Parameter_Estimation_for_Text_Analysis. [22] ZHONG S.Semi-supervised model-based document clustering:a comparative study[J].Machine Learning,2006,65(1):3-29. [23] JAIN A K.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666. |