作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 开发研究与工程应用 • 上一篇    下一篇

基于客观满意聚类的pH中和过程建模方法

王娜 1a,1b,2a,胡超芳 2b,师五喜 1a,1b   

  1. (1.天津工业大学 a.电气工程与自动化学院;b.电工电能新技术天津市重点实验室,天津 300387; 2.天津大学 a.微光机电系统技术教育部重点实验室;b.电气与自动化工程学院,天津 300072)
  • 收稿日期:2016-11-16 出版日期:2018-02-15 发布日期:2018-02-25
  • 作者简介:王娜(1977—),女,讲师、博士,主研方向为复杂工业过程建模、控制与优化;胡超芳,副教授、博士;师五喜,教授、博士。
  • 基金资助:
    天津大学微光机电系统技术教育部重点实验室开放课题基金“基于视觉的小型无人机跟踪系统研究”(MOMST2016-4)。

Modelling Method Based on Objective Satisfactory Clustering for pH Neutralization Process

WANG Na  1a,1b,2a,HU Chaofang  2b,SHI Wuxi  1a,1b   

  1. (1a.School of Electrical Engineering and Automation; 1b.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology,Tianjin Polytechnic University,Tianjin 300387,China; 2a.Key Laboratory of Micro Optical Electronic Mechanical System Technology,Ministry of Education; 2b.School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China)
  • Received:2016-11-16 Online:2018-02-15 Published:2018-02-25

摘要: 针对一类生产中存在严重非线性的复杂工业过程——pH中和过程,基于客观聚类思想,并结合Gustafson-Kessel聚类,提出一种新的T-S模糊建模方法。根据用户对建模性能的满意度要求,通过迭代模糊聚类,进行模型前提结构和参数的辨识。仿真结果表明,与传统的模糊聚类等方法相比,该方法不依赖于系统的先验知识和预先定义的模糊隶属度函数,具有较为精简的结构和更好的逼近性能,对数据中的噪声具有一定的鲁棒性。

关键词: 复杂工业过程, T-S模糊建模, 客观聚类, 模糊聚类, 满意聚类, pH中和过程

Abstract: For some manufacturing exists complex industrial processes with severe nonlinearity,named pH neutralization process,a new process T-S fuzzy modelling method via objective clustering idea,combined with Gustafson-Kessel(GK) clustering,is proposed.According to the satisfactory degree of modeling performance indexes,the premise structures and their parameters are identified through the iterated fuzzy clustering.Simulation results show that compared with the traditional fuzzy clustering,the proposed method does not rely on the prior-knowledge or defined fuzzy membership function,has a streamlined structure and better approximation performance,and is robust for the existing noise in data.

Key words: complex industrial process, T-S fuzzy modelling, objective clustering, fuzzy clustering, satisfactory clustering, pH neutralization process

中图分类号: