作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (12): 142-149,184. doi: 10.19678/j.issn.1000-3428.0056045

• 网络空间安全 • 上一篇    下一篇

基于敏感信息邻近抵抗的匿名方法

桂琼1,2, 吕永军1, 程小辉1   

  1. 1. 桂林理工大学 信息科学与工程学院, 广西 桂林 541004;
    2. 武汉理工大学 信息工程学院, 武汉 430070
  • 收稿日期:2019-09-18 修回日期:2019-11-30 发布日期:2020-01-13
  • 作者简介:桂琼(1972-),女,教授,主研方向为信息安全、大数据分析、数据挖掘;吕永军,硕士研究生;程小辉,教授。
  • 基金资助:
    国家自然科学基金地区科学基金项目(61862019);广西自然科学基金面上项目(2017GXNSFAA198223)。

Anonymity Method Based on Proximity Resistance to Sensitive Information

GUI Qiong1,2, Lü Yongjun1, CHENG Xiaohui1   

  1. 1. College of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China;
    2. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2019-09-18 Revised:2019-11-30 Published:2020-01-13

摘要: 针对相似性攻击造成隐私泄露的问题,构建一种(r,k)-匿名模型,基于敏感属性语义关联,设定邻近抵抗阈值r,并提出满足该模型的匿名方法GDPPR。采用模糊聚类技术完成簇的划分,结合敏感属性相异度得出距离矩阵,使得每个等价类中相邻语义下的敏感属性取值频率不高于阈值r,同时保证较高的数据可用性。在两个标准数据集上的实验结果表明,该方案能够较好地满足(r,k)-匿名模型,有效抵抗相似性攻击,减少泛化产生的信息损失。

关键词: 数据匿名, 相似性攻击, 模糊聚类, 邻近抵抗, 数据泛化

Abstract: In view of the problem of the privacy leakage caused by similarity attacks,this paper proposes a (r,k)-anonymous model.Based on the semantic association between sensitive attributes,the proximity resistance threshold r is set,and an anonymous method Generalized Data for Privacy Proximity Resistance (GDPPR) that satisfies the model is designed.The fuzzy clustering technique is used to complete the cluster partitioning,and the distance matrix is obtained by combining the dissimilarity of sensitive attributes.Therefore,the frequency of taking values of sensitive attributes under the proximity semantics in each equivalence class is kept under the threshold r and the data availability is ensured.Experimental results on two standard datasets show that GDPPR can satisfy the (r,k)-anonymity model.It effectively resists similarity attacks,and reduces the information loss caused by generalization.

Key words: data anonymity, similar attack, fuzzy clustering, proximity resistance, data generalization

中图分类号: