[1] China Internet Information Center.The 43rd statistical report on Internet development in China[EB/OL].[2019-09-16].http://www.cnnic.net.cn/hlwfzyj/hlwxz bg/hlwtjbg/201902/t20190228_70645.html.(in Chinese)中国互联网信息中心.第43次《中国互联网发展状况统计报告》[EB/OL].[2019-09-16].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/t20190228_70645.html. [2] WU Yanwen,HUANG Kai,WANG Xinyue,et al. Method of emotional classification in short texts combined with LDA models[J].Journal of Chinese Computer Systems 2019,40(10):2082-2086.(in Chinese)吴彦文,黄凯,王馨悦,等.一种融合主题模型的短文本情感分类方法[J].小型微型计算机系统,2019,40(10):2082-2086. [3] YANG Zhitong,ZHENG Jun.Research on Chinese short text classification based on word2vec[C]//Proceedings of the 2nd IEEE International Conference on Computer and Communications.Washington D.C.,USA:IEEE Press,2019:90-96. [4] CHEN Qiaohong,WANG Lei,SUN Qi,et al.Short text classification method of convolutional neural network[J].Application of Computer Systems,2019,28(5):137-142.(in Chinese)陈巧红,王磊,孙麒,等.卷积神经网络的短文本分类方法[J].计算机系统应用,2019,28(5):137-142. [5] LIU Xiaomin,WANG Hao,LI Xinlei,et al.A comparative study on the role of different feature granularity in short text classification of Weibo[J].Information Science,2018,36(12):126-133.(in Chinese)刘小敏,王昊,李心蕾,等.不同特征粒度在微博短文本分类中作用的比较研究[J].情报科学,2018,36(12):126-133. [6] WANG Lei.Research on Chinese short text classification method based on hybrid neural network[D].Hangzhou:Zhejiang Sci-Tech University,2019.(in Chinese)王磊.基于混合神经网络的中文短文本分类方法研究[D].杭州:浙江理工大学,2019. [7] FENG Yong,QU Bohao,XU Hongyan,et al.Chinese FastText short text classification method based on TF-IDF and LDA[J].Journal of Applied Sciences,2019,37(3):378-388.(in Chinese)冯勇,屈渤浩,徐红艳,等.融合TF-IDF和LDA的中文FastText短文本分类方法[J].应用科学学报,2019,37(3):378-388. [8] WU Fenlin.Adaptive normalized weighted KNN text classification based on PSO[J].Scientific Bulletin of National Mining University,2016(1):109-115. [9] GAO Yunlong,ZUO Wanli,WANG Ying,et al.Short text classification model based on integrated neural network[J].Journal of Jilin University(Science Edition),2018,56(4):933-938.(in Chinese)高云龙,左万利,王英,等.基于集成神经网络的短文本分类模型[J].吉林大学学报(理学版),2018,56(4):933-938. [10] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-09-16].https://arxiv.org/abs/1810.04805. [11] SUN Zhaoying,LIU Gongshen.Research on neural network clustering algorithm for short texts[J].Computer Science,2018,45(S1):392-395.(in Chinese)孙昭颖,刘功申.面向短文本的神经网络聚类算法研究[J].计算机科学,2018,45(S1):392-395. [12] ZHANG Dongwen,XU Hua,SU Zengcai,et al.Chinese comments sentiment classification based on word2vec and SVMperf[J].Expert Systems with Applications,2015,42(4):1857-1863. [13] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[EB/OL].[2019-09-16].https://arXiv:1706.03762v5. [14] YANG Piao,DONG Wenyong.Chinese named entity recognition method based on BERT embedding[J].Computer Engineering,2020,46(4):40-45,52.(in Chinese)杨飘,董文永.基于BERT嵌入的中文命名实体识别方法[J].计算机工程,2020,46(4):40-45,52. [15] BRAUD C,DENIS P.Comparing word representations for implicit discourse relation classification[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon,Portugal:Association for Computational Linguistics,2015:1-8. [16] LI Li,YING Sancong.Implementation of Softmax layer of FPGA-based convolutional neural networks[J].Modern Computer(Professional Edition),2017(26):21-24.(in Chinese)李理,应三丛.基于FPGA的卷积神经网络Softmax层实现[J].现代计算机(专业版),2017(26):21-24. [17] YANG Sen.Application research of credit scoring model for small and micro enterprises based on Softmax regression[D].Suzhou:Soochow University,2017.(in Chinese)杨森.基于Softmax回归的小微企业信用评分模型应用研究[D].苏州:苏州大学,2017. [18] LI Ran.Research on short text emotional tendency based on deep learning[D].Beijing:Beijing Institute of Technology,2015.(in Chinese)李然.基于深度学习的短文本情感倾向性研究[D].北京:北京理工大学,2015. [19] Sogou Lab Data.Sohu news data(SogouCS)[EB/OL].[2019-09-16].http://www.sogou.coms/labs/resource/cs.php.(in Chinese)搜狗实验室数据.搜狐新闻数据(SogouCS)[EB/OL].[2019-09-16].http://www.sogou.coms/labs/resource/cs.php. [20] LI Y X,TAN C L,DING X Q,et al.Contextual post-processing based on the confusion matrix in offline handwritten Chinese script recognition[J].Pattern Recognition,2004,37(9):1901-1912. [21] ZHOU Zhihua.Machine learning[M].Beijing:Tsinghua University Press,2016.(in Chinese)周志华.机器学习[M].北京:清华大学出版社,2016. [22] KIM Y.Convolutional neural networks for sentence classification[EB/OL].[2019-09-16].https://arxiv.org/abs/1408.5882. |