[1] LIU Zhiyuan,SUN Maosong,LIN Yankai,et al.Knowledge representation learning:a review[J].Computer Research and Development,2016,53(2):247-261.(in Chinese)刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J].计算机研究与发展,2016,53(2):247-261. [2] XIE Ruobing,LIU Zhiyuan,JIA Jia,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2016:2659-2665. [3] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of NIPS'13.Cambridge,USA:MIT Press,2013:2787-2795. [4] WANG Zhen,ZHANG Jianwei,FENG Jianlin,et al.Know-legde graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2014:1112-1119. [5] CHEN Xiaojun,XIANG Yang.STransH:a revised translation-based model for knowledge representation[J].Computer Science,2019,46(9):184-189.(in Chinese)陈晓军,向阳.STransH:一种改进的基于翻译模型的知识表示模型[J].计算机科学,2019,46(9):184-189. [6] DUAN Pengfei,WANG Yuan,XIONG Shengwu,et al.Space projection and relation path based representation learning for construction of geography knowledge graph[J].Journal of Chinese Information Processing,2018,32(3):26-33.(in Chinese)段鹏飞,王远,熊盛武,等.基于空间投影和关系路径的地理知识图谱表示学习[J].中文信息学报,2018,32(3):26-33. [7] LIN Yankai,LIU Zhiyuan,SUN Maosong,et al.Learing entity and relation embedding for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2015:1-7. [8] ZHU Yanli,YANG Xiaoping,WANG Liang,et al.TransRD:embedding of knowledge graph with asymmetric features[J].Journal of Chinese Information Processing,2019,33(11):73-82.(in Chinese)朱艳丽,杨小平,王良,等.TransRD:一种不对等特征的知识图谱嵌入表示模型[J].中文信息学报,2019,33(11):73-82. [9] BAO Kaifang,GU Junzhong,YANG Jing.Knowledge graph completion method based on jointly representation of structure and text[J].Computer Engineering,2018,44(7):205-211.(in Chinese)鲍开放,顾君忠,杨静.基于结构与文本联合表示的知识图谱补全方法[J].计算机工程,2018,44(7):205-211. [10] PENG Min,YAO Yalan,XIE Qianqian,et al.Knowledge representation learning for joint structural and textual embedding via attention-based CNN[J].Journal of Chinese Information Processing,2019,33(2):51-58.(in Chinese)彭敏,姚亚兰,谢倩倩,等.基于带注意力机制CNN的联合知识表示模型[J].中文信息学报,2019,33(2):51-58. [11] JI Guoliang,HE Shizhu,XU Liheng,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.[S.l.]:ACL,2015:687-696. [12] WANG Huiyong,LUN Bing,ZHANG Xiaoming,et al.Multi-modal entity alignment based on joint knowledge representation learning[J].Control and Decision,2020,35(12):2855-2864.(in Chinese)王会勇,论兵,张晓明,等.基于联合知识表示学习的多模态实体对齐[J].控制与决策,2020,35(12):2855-2864. [13] JI Guoliang,LIU Kang,HE Shizhu,et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2016:985-991. [14] FAN M,ZHOU Q,CHANG E,et al.Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language,Information and Computing.Hong Kong,China:[s.n.],2014:328-337. [15] XIAO Han,HUANG Minlie,ZHU Xiaoyan.From one point to a manifold:knowledge graph embedding for precise link prediction[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.New York,USA:ACM Press,2016:1315-1321. [16] FENG Jun,HUANG Minlie,WANG Mingdong,et al.Knowledge graph embedding by flexible translation[C]//Proceedings of the 15th International Conference on Principles Knowledge Representation Reasoning.Cape Town,South Africa:[s.n.],2015:557-560. [17] XIAO Han,HUANG Minlie,HAO Yu,et al.TransA:an adaptive approach for knowledge graph embedding[EB/OL].(2015-09-28)[2020-01-08].https://arxiv.org/pdf/1509.05490.pdf. [18] FANG Yang,ZHAO Xiang,TAN Zhen,et al.A revised translation-based mehod for knowledge graph-representa-tion[J].Computer Research and Development,2018,55(1):139-150.(in Chinese)方阳,赵翔,谭真,等.一种改进的基于翻译的知识图谱表示方法[J].计算机研究与发展,2018,55(1):139-150. [19] RAO Guanjun,GU Tianlong,CHANG Liang,et al.Knowledge graph embedding based on similarity negative sampling[J].CAAI Transactions on Intelligent Systems,2020,15(2):218-226.(in Chinese)饶官军,古天龙,常亮,等.基于相似性负采样的知识图谱嵌入[J].智能系统学报,2020,15(2):218-226. [20] AN Bo,HAN Xianpei,SUN Le,et al.Triple classification based on synthesized features for knowledge base[J].Journal of Chinese Information Processing,2016,30(6):84-89,99.(in Chinese)安波,韩先培,孙乐,等.基于分布式表示和多特征融合的知识库三元组分类[J].中文信息学报,2016,30(6):84-89,99. [21] XIAO Han,HUANG Minlie,HAO Yu,et al.TransG:a generative mixture model for knowledge graph embedding[EB/OL].(2017-09-08)[2020-01-08].https://arxiv.org/pdf/1509.05488.pdf. [22] BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5):993-1022. [23] KINGMA D P,WELLING M.Auto-encoding variational Bayes[EB/OL].(2014-05-01)[2020-01-08].https://arxiv.org/pdf/1312.6114.pdf. [24] TANG Jie,ZHANG Jing,YAO Liming,et al.ArnetMiner:extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:990-998. [25] TU Cunchao,ZHANG Zhengyang,LIU Zhiyan,et al.TransNet:translation-based network representation learning for social relation extraction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.New York,USA:ACM Press,2017:2864-2870. [26] HE Ming,DU Xiangkun,WANG Bo.Representation learning of knowledge graphs via fine-grained relation description combinations[J].IEEE Access,2019,7:26466-26473. [27] NICKEL M,KIELA D.Learning continuous hierarchies in the Lorentz model of hyperbolic geometry[EB/OL].(2018-07-08)[2020-01-08].https://arxiv.org/pdf/1806.03417.pdf. |