1 |
JOUX A. A one round protocol for tripartite diffie-Hellman. Journal of Cryptology, 2004, 17(4): 263- 276.
doi: 10.1007/s00145-004-0312-y
|
2 |
BONEH D, FRANKLIN M. Identity-based encryption from the Weil pairing. SIAM Journal on Computing, 2003, 32(3): 586- 615.
doi: 10.1137/S0097539701398521
|
3 |
YI X. An identity-based signature scheme from the Weil pairing. IEEE Communications Letters, 2003, 7(2): 76- 78.
doi: 10.1109/LCOMM.2002.808397
|
4 |
DU H Z, WEN Q Y. Efficient and provably-secure certificateless short signature scheme from bilinear pairings. Computer Standards & Interfaces, 2009, 31(2): 390- 394.
|
5 |
国家密码管理局. 中华人民共和国密码行业标准: GM/T 0044.1—2016 SM9标识密码算法[S]. 北京: 中国标准出版社, 2016.
|
|
State Cryptography Administration. The people's republic of China password industry standard: GM/T 0044-2016 SM9 identification cryptographic algorithm[S]. Beijing: Standards Press of China, 2016. (in Chinese)
|
6 |
周传玉, 王吉伟, 李明. 物联网中标识密码应用研究. 信息安全研究, 2017, 3(11): 1040- 1044.
doi: 10.3969/j.issn.2096-1057.2017.11.015
|
|
ZHOU C Y, WANG J W, LI M. Research on identity-based cryptography application in Internet of Things. Journal of Information Security Research, 2017, 3(11): 1040- 1044.
doi: 10.3969/j.issn.2096-1057.2017.11.015
|
7 |
MILLER V S. The Weil pairing, and its efficient calculation. Journal of Cryptology, 2004, 17(4): 235- 261.
doi: 10.1007/s00145-004-0315-8
|
8 |
RÜCK H G. On the discrete logarithm in the divisor class group of curves. Mathematics of Computation, 1999, 68(226): 805- 807.
doi: 10.1090/S0025-5718-99-01043-1
|
9 |
BARRETO P S L M, GALBRAITH S D, HÉIGEARTAIGH C Ó, et al. Efficient pairing computation on supersingular Abelian varieties. Designs, Codes and Cryptography, 2007, 42(3): 239- 271.
doi: 10.1007/s10623-006-9033-6
|
10 |
HESS F, SMART N P, VERCAUTEREN F. The eta pairing revisited. IEEE Transactions on Information Theory, 2006, 52(10): 4595- 4602.
doi: 10.1109/TIT.2006.881709
|
11 |
ZHAO C G, ZHANG F G, HUANG J W. A note on the Ate pairing. International Journal of Information Security, 2008, 7(6): 379- 382.
doi: 10.1007/s10207-008-0054-1
|
12 |
LEE E, LEE H S, PARK C M. Efficient and generalized pairing computation on abelian varieties. IEEE Transactions on Information Theory, 2009, 55(4): 1793- 1803.
doi: 10.1109/TIT.2009.2013048
|
13 |
NAEHRIG M, NIEDERHAGEN R, SCHWABE P. New software speed records for cryptographic pairings[C]//Proceedings of International Conference on Cryptology and Information Security in Latin America. Berlin, Germany: Springer, 2010: 109-123.
|
14 |
甘植旺, 廖方圆. 国密SM9中R-ate双线性对快速计算. 计算机工程, 2019, 45(6): 171- 174.
doi: 10.19678/j.issn.1000-3428.0054123
|
|
GAN Z W, LIAO F Y. Rapid calculation of R-ate bilinear pairing in China state cryptography standard SM9. Computer Engineering, 2019, 45(6): 171- 174.
doi: 10.19678/j.issn.1000-3428.0054123
|
15 |
BEUCHAT J L, GONZÁLEZ-DÍAZ J E, MITSUNARI S, et al. High-speed software implementation of the optimal ate pairing over Barreto-Naehrig curves[C]//Proceedings of International Conference on Pairing-Based Cryptography. Berlin, Germany: Springer, 2010: 21-39.
|
16 |
王明东, 何卫国, 李军, 等. 国密SM9算法R-ate对计算的优化设计. 通信技术, 2020, 53(9): 2241- 2244.
doi: 10.3969/j.issn.1002-0802.2020.09.025
|
|
WANG M D, HE W G, LI J, et al. Optimal design of R-ate pair in SM9 algorithm. Communications Technology, 2020, 53(9): 2241- 2244.
doi: 10.3969/j.issn.1002-0802.2020.09.025
|
17 |
SCOTT M, BENGER N M, CHARLEMAGNE M, et al. On the final exponentiation for calculating pairings on ordinary elliptic curves[C]//Proceedings of International Conference on Pairing-Based Cryptography. Berlin, Germany: Springer, 2009: 78-88.
|
18 |
杨国强, 孔凡玉, 徐秋亮. 一种基于FPGA的SM9快速实现方法. 山东大学学报(理学版), 2020, 55(9): 54- 61.
URL
|
|
YANG G Q, KONG F Y, XU Q L. A high-performance FPGA-based implementation method of SM9. Journal of Shandong University (Natural Science), 2020, 55(9): 54- 61.
URL
|
19 |
LIM C H, LEE P J. More flexible exponentiation with precomputation[C]//Proceedings of Annual International Cryptology Conference. Berlin, Germany: Springer, 2007: 95-107.
|
20 |
MONTGOMERY P L. Modular multiplication without trial division. Mathematics of Computation, 1985, 44(170): 519- 521.
doi: 10.1090/S0025-5718-1985-0777282-X
|
21 |
FAN J F, VERCAUTEREN F, VERBAUWHEDE I. Efficient hardware implementation of fp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers, 2012, 61(5): 676- 685.
doi: 10.1109/TC.2011.78
|
22 |
TENCA A F, KOÇ Ç K. A scalable architecture for Montgomery nultiplication[C]//Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems. Berlin, Germany: Springer, 1999: 94-108.
|
23 |
AMIET D, CURIGER A, ZBINDEN P. Flexible FPGA-based architectures for curve point multiplication over GF(p)[C]//Proceedings of Euromicro Conference on Digital System Design. Washington D. C., USA: IEEE Press, 2016: 107-114.
|
24 |
SAVAS E, KOC C K. The montgomery modular inverse-revisited. IEEE Transactions on Computers, 2000, 49(7): 763- 766.
|
25 |
BARRETO P S L M, NAEHRIG M. Pairing-friendly elliptic curves of prime order[C]//Proceedings of International Workshop on Selected Areas in Cryptography. Washington D. C., USA: IEEE Press, 2006: 319-331.
|
26 |
KOBLITZ N. Elliptic curve cryptosystems. Mathematics of Computation, 1987, 48(177): 203- 209.
|
27 |
MILLER V S. Use of elliptic curves in cryptography[C]//Proceedings of Conference on the Theory and Application of Cryptographic Techniques. Berlin Germany: Springer, 2007: 417-426.
|
28 |
DIJK M, CLARKE D, GASSEND B, et al. Speeding up exponentiation using an untrusted computational resource. Designs, Codes and Cryptography, 2006, 39(2): 253- 273.
|
29 |
BENGER N M, SCOTT M. Constructing tower extensions for the implementation of pairing-based cryptography. IACR Cryptology EPrint Archive, 2009, 29(4): 556- 562.
|
30 |
WU Y, BAI G Q, WU X J. A karatsuba algorithm based accelerator for pairing computation[C]//Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits. Washington D. C., USA: IEEE Press, 2019: 1-3.
|
31 |
王松, 房利国, 韩炼冰, 等. 一种SM9数字签名及验证算法的快速实现方法. 通信技术, 2019, 52(10): 2524- 2527.
URL
|
|
WANG S, FANG L G, HAN L B, et al. Fast implementation of SM9 digital signature and verification algorithms. Communications Technology, 2019, 52(10): 2524- 2527.
URL
|