1 |
|
2 |
HE Y L, LI Y P, WU L, et al. MsDroid: identifying malicious snippets for Android malware detection. IEEE Transactions on Dependable and Secure Computing, 2023, 20(3): 2025- 2039.
doi: 10.1109/TDSC.2022.3168285
|
3 |
JERBI M, DAGDIA Z C, BECHIKH S, et al. On the use of artificial malicious patterns for Android malware detection. Computers & Security, 2020, 92, 101743.
|
4 |
褚堃, 万良, 马丹, 等. 深度可分离卷积在Android恶意软件分类的应用研究. 计算机应用研究, 2022, 39(5): 1534- 1540.
doi: 10.19734/j.issn.1001-3695.2021.10.0435
|
|
CHU K, WAN L, MA D, et al. Research on application of depthwise separable convolution in Android malware classification. Application Research of Computers, 2022, 39(5): 1534- 1540.
doi: 10.19734/j.issn.1001-3695.2021.10.0435
|
5 |
GORDON M I, KIM D, PERKINS J, et al. Information-flow analysis of Android applications in DroidSafe[C]//Proceedings of Network and Distributed System Security Symposium. San Diego, USA: Internet Society, 2015: 110-115.
|
6 |
TANG A, SETHUMADHAVAN S, STOLFO S J. Unsupervised anomaly-based malware detection using hardware features[C]//Proceedings of International Workshop on Recent Advances in Intrusion Detection. Berlin, Germany: Springer, 2014: 109-129.
|
7 |
TAM K, KHAN S J, FATTORI A, et al. CopperDroid: automatic reconstruction of Android malware behaviors[C]//Proceedings of Network and Distributed System Security Symposium. San Diego, USA: Internet Society, 2015: 1-15.
|
8 |
李舟军, 吴春明, 王啸. 基于沙盒的Android应用风险行业分析与评估. 清华大学学报(自然科学版), 2016, 56(5): 453- 460.
|
|
LI Z J, WU C M, WANG X. Assessment of Android application's risk behavior based on a sandbox system. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 453- 460.
|
9 |
KIM T G, KANG B J, RHO M, et al. A multimodal deep learning method for Android malware detection using various features. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 773- 788.
doi: 10.1109/TIFS.2018.2866319
|
10 |
QIU J, HAN Q L, LUO W, et al. Cyber code intelligence for Android malware detection. IEEE Transactions on Cybernetics, 2023, 53(1): 617- 627.
doi: 10.1109/TCYB.2022.3164625
|
11 |
ARP D, SPREITZENBARTH M, HÜBNER M, et al. Drebin: effective and explainable detection of Android malware in your pocket[C]//Proceedings of Network and Distributed System Security Symposium. San Diego, USA: Internet Society, 2014: 1-10.
|
12 |
BAI H P, XIE N N, DI X Q, et al. FAMD: a fast multifeature Android mal-ware detection framework, design, and implementation. IEEE Access, 2020, 8, 194729- 194740.
doi: 10.1109/ACCESS.2020.3033026
|
13 |
ZHANG G F, LI Y, BAO X D, et al. TSDroid: a novel Android malware detection framework based on temporal & spatial metrics in IoMT. ACM Transactions on Sensor Networks, 2023, 19(3): 1- 23.
|
14 |
ZHANG L, THING V L L, CHENG Y. A scalable and extensible frame-work for Android malware detection and family attribution. Computers & Security, 2019, 80, 120- 133.
|
15 |
苏志达, 祝跃飞, 刘龙. 基于深度学习的安卓恶意应用检测. 计算机应用, 2017, 37(6): 1650- 1656.
doi: 10.3969/j.issn.1001-3695.2017.06.011
|
|
SU Z D, ZHU Y F, LIU L. Android malware application detection using deep learning. Journal of Computer Applications, 2017, 37(6): 1650- 1656.
doi: 10.3969/j.issn.1001-3695.2017.06.011
|
16 |
黄浩华, 崔展齐, 潘敏学, 等. 静动态结合的恶意Android应用自动检测技术. 信息安全学报, 2017, 2(4): 27- 40.
URL
|
|
HUANG H H, CUI Z Q, PAN M X, et al. Automatic malicious Android application detection approach by combining static analysis and dynamic testing. Journal of Cyber Security, 2017, 2(4): 27- 40.
URL
|
17 |
XI S Q, YANG S, XIAO X S, et al. Deepintent: deep icon-behavior learning for detecting intention-behavior discrepancy in mobile apps[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 2421-2436.
|
18 |
DAS P K, JOSHI A, FININ T. App behavioral analysis using system calls[C]//Proceedings of Conference on Computer Communications Workshops. Washington D. C., USA: IEEE Press, 2017: 487-492.
|
19 |
YERIMA S Y, SEZER S, MCWILLIAMS G. Analysis of Bayesian classification-based approaches for Android malware detection. IET Information Security, 2014, 8(1): 25- 36.
|
20 |
BURGUERA I, ZURUTUZA U, NADJM-TEHRANI S. Crowdroid: behavior-based malware detection system for Android[C]//Proceedings of the 1st Workshop on Security and Privacy in Smartphones and Mobile Devices. New York, USA: ACM Press, 2011: 15-26.
|
21 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural computation, 1997, 9(8): 1735- 1780.
|
22 |
|
23 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929- 1958.
|
24 |
|
25 |
MAHDAVIFAR S, KADIR A F D, FATEMI R, et al. Dynamic Android malware category classification using semi-supervised deep learning[C]//Proceedings of the 18th International Conference on Dependable, Auto-nomic, and Secure Computing. Washington D. C., USA: IEEE Press, 2020: 17-24.
|
26 |
YU K, ZHOU Y F, XU H, et al. DiagDroid: Android performance diagnosis via anatomizing asynchronous executions[C]//Proceedings of the 24th International Symposium on Foundations of Software Engineering. New York, USA: ACM Press, 2016: 410-421.
|
27 |
YUAN B G, WANG J F, LIU D, et al. Byte-level malware classification based on markov images and deep learning. Computers & Security, 2020, 92, 101740.
|