1 |
NJOKU J N , NWAKANMA C I , AMAIZU G C , et al. Prospects and challenges of Metaverse application in data-driven intelligent transportation systems. IET Intelligent Transport Systems, 2023, 17 (1): 1- 21.
doi: 10.1049/itr2.12252
|
2 |
YU H , LI Z N , ZHANG G H , et al. Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks. IEEE Transactions on Vehicular Technology, 2020, 69 (4): 3680- 3692.
doi: 10.1109/TVT.2020.2978450
|
3 |
田智慧, 马占宇, 魏海涛. 基于密度核心的出租车载客轨迹聚类算法. 计算机工程, 2021, 47 (2): 133- 138.
doi: 10.19678/j.issn.1000-3428.0057015
|
|
TIAN Z H , MA Z Y , WEI H T . Taxi passenger trajectory clustering algorithm based on density core. Computer Engineering, 2021, 47 (2): 133- 138.
doi: 10.19678/j.issn.1000-3428.0057015
|
4 |
LIAO Z H, ZHANG J, LIU Y Z, et al. Fusing geographic information into latent factor model for pick-up region recommendation[C]//Proceedings of the IEEE International Conference on Multimedia[WT《Times New Roman》]& Expo Workshops. Washington D.C., USA: IEEE Press, 2019: 330-335.
|
5 |
HUANG Z H , TANG J Y , SHAN G X , et al. An efficient passenger-hunting recommendation framework with multitask deep learning. IEEE Internet of Things Journal, 2019, 6 (5): 7713- 7721.
doi: 10.1109/JIOT.2019.2901759
|
6 |
KONG X J , XIA F , WANG J Z , et al. Time-location-relationship combined service recommendation based on taxi trajectory data. IEEE Transactions on Industrial Informatics, 2017, 13 (3): 1202- 1212.
doi: 10.1109/TII.2017.2684163
|
7 |
QU M, ZHU H S, LIU J M, et al. A cost-effective recommender system for taxi drivers[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 45-54.
|
8 |
QIAN S Y, CAO J, LE MOUËL F, et al. SCRAM: a sharing considered route assignment mechanism for fair taxi route recommendations[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2015: 955-964.
|
9 |
WU L , HU S , YIN L , et al. Optimizing cruising routes for taxi drivers using a spatio-temporal trajectory model. ISPRS International Journal of Geo-Information, 2017, 6 (11): 373.
doi: 10.3390/ijgi6110373
|
10 |
JI S G , WANG Z Y , LI T R , et al. Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowledge-Based Systems, 2020, 205, 106302.
doi: 10.1016/j.knosys.2020.106302
|
11 |
LAI Y X , LV Z , LI K C , et al. Urban traffic Coulomb's law: a new approach for taxi route recommendation. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (8): 3024- 3037.
doi: 10.1109/TITS.2018.2870990
|
12 |
陈冬梅, 卜霄菲, 黄河, 等. 基于候客点规划的空闲出租车路线推荐算法. 计算机工程, 2022, 48 (2): 297- 305.
doi: 10.19678/j.issn.1000-3428.0060727
|
|
CHEN D M , BU X F , HUANG H , et al. Idle taxi route recommendation algorithm based on waiting point planning. Computer Engineering, 2022, 48 (2): 297- 305.
doi: 10.19678/j.issn.1000-3428.0060727
|
13 |
GARG N, RANU S. Route recommendations for idle taxi drivers: find me the shortest route to a customer![C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2018: 1425-1434.
|
14 |
GUO P Z , XIAO K L , YE Z Y , et al. Route optimization via environment-aware deep network and reinforcement learning. ACM Transactions on Intelligent Systems and Technology, 2021, 12 (6): 1- 21.
doi: 10.48550/arXiv.2111.09124
|
15 |
LIAN J X, ZHOU X H, ZHANG F Z, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2018: 1754-1763.
|
16 |
LI L, WANG D D, LI T, et al. SCENE: a scalable two-stage personalized news recommendation system[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2011: 125-134.
|
17 |
ZHAO X Y , NIU Z D , CHEN W . Interest before liking: two-step recommendation approaches. Knowledge-Based Systems, 2013, 48, 46- 56.
doi: 10.1016/j.knosys.2013.04.009
|
18 |
HUANG S R , ZHANG J , SCHONFELD D , et al. Two-stage friend recommendation based on network alignment and series expansion of probabilistic topic model. IEEE Transactions on Multimedia, 2017, 19 (6): 1314- 1326.
doi: 10.1109/TMM.2017.2652074
|
19 |
BAI L , HU M , MA Y L , et al. A hybrid two-phase recommendation for group-buying E-commerce applications. Applied Sciences, 2019, 9 (15): 3141.
doi: 10.3390/app9153141
|
20 |
YUAN J, ZHENG Y, ZHANG L H, et al. Where to find my next passenger[C]//Proceedings of the 13th International Conference on Ubiquitous Computing. New York, USA: ACM Press, 2011: 109-118.
|
21 |
ADAMS S , CODY T , BELING P A . A survey of inverse reinforcement learning. Artificial Intelligence Review, 2022, 55 (6): 4307- 4346.
doi: 10.1007/s10462-021-10108-x
|
22 |
MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
23 |
GUAN Y , REN Y G , LI S E , et al. Centralized cooperation for connected and automated vehicles at intersections by proximal policy optimization. IEEE Transactions on Vehicular Technology, 2020, 69 (11): 12597- 12608.
doi: 10.1109/TVT.2020.3026111
|
24 |
SILVER D , HUANG A , MADDISON C J , et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529 (7587): 484- 489.
doi: 10.1038/nature16961
|
25 |
|
26 |
HAYDARI A , YILMAZ Y . Deep reinforcement learning for intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (1): 11- 32.
doi: 10.1109/TITS.2020.3008612
|
27 |
WANG S X , LIU H P , GOMES P H , et al. Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE Transactions on Cognitive Communications and Networking, 2018, 4 (2): 257- 265.
doi: 10.1109/TCCN.2018.2809722
|
28 |
LIU R K , PIPLANI R , TORO C . Deep reinforcement learning for dynamic scheduling of a flexible job shop. International Journal of Production Research, 2022, 60 (13): 4049- 4069.
doi: 10.1080/00207543.2022.2058432
|
29 |
HAKLAY M , WEBER P . OpenStreetMap: user-generated street maps. IEEE Pervasive Computing, 2008, 7 (4): 12- 18.
doi: 10.1109/MPRV.2008.80
|
30 |
YAN X J , LIU S B , LIU W , et al. An improved coverage-oriented retrieval algorithm for large-area remote sensing data. International Journal of Digital Earth, 2022, 15 (1): 606- 625.
doi: 10.1080/17538947.2022.2030816
|
31 |
KONSTAN J A , MILLER B N , MALTZ D , et al. GroupLens. Communications of the ACM, 1997, 40 (3): 77- 87.
doi: 10.1145/245108.245126
|
32 |
RENDLE S . Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology, 2012, 3 (3): 1- 22.
doi: 10.1145/2168752.2168771
|
33 |
LIU Y Z , QING R T , ZHAO Y J , et al. Fusing spatio-temporal contexts into DeepFM for taxi pick-up area recommendation. Computer Systems Science and Engineering, 2023, 45 (3): 2505- 2519.
doi: 10.32604/csse.2023.021615
|