作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (12): 163-173. doi: 10.19678/j.issn.1000-3428.0068254

• 人工智能与模式识别 • 上一篇    下一篇

面向GPS数据的出租车载客路线层次化推荐模型

张德城1,2, 刘毅志1,2,*(), 赵肄江1,2, 廖祝华1,2   

  1. 1. 湖南科技大学计算机科学与工程学院, 湖南 湘潭 411201
    2. 湖南科技大学服务计算与软件服务新技术湖南省重点实验室, 湖南 湘潭 411201
  • 收稿日期:2023-08-17 出版日期:2024-12-15 发布日期:2024-04-02
  • 通讯作者: 刘毅志
  • 基金资助:
    国家自然科学基金面上项目(41871320); 湖南省重点研发计划项目(2023sk2081); 湖南省教育厅科学研究重点项目(22A0341)

Taxi Pick-Up Route Hierarchical Recommendation Model Facing GPS Data

ZHANG Decheng1,2, LIU Yizhi1,2,*(), ZHAO Yijiang1,2, LIAO Zhuhua1,2   

  1. 1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    2. Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2023-08-17 Online:2024-12-15 Published:2024-04-02
  • Contact: LIU Yizhi

摘要:

出租车载客推荐能够有效提高司机利润, 对于提升交通效率、改善城市出行体验以及推动智能交通的发展都具有重要意义。现有方法一般直接向司机进行载客区域或载客路线推荐, 没有考虑将这两者进行结合, 不仅面临数据稀疏性问题, 而且难以兼顾推荐准确性与实时性能。为此, 提出一种面向GPS数据的出租车载客路线层次化推荐模型, 其中采用了抗稀疏性的极深因子分解机(xDeepFM)、深度Q网络(DQN)强化学习算法以及层次化推荐策略。首先, 离线推荐高载客概率的大网格, 以减少在线计算量; 然后, 当出租车司机提出实时载客推荐需求时, 在离线推荐的大网格内进一步推荐高载客概率的小网格; 最后, 给司机规划一条到小网格的载客路线。在滴滴公司数据集上进行实验, 结果表明, 与现有的一些先进方法相比, 该方法可以使空载出租车司机的巡航时间至少减少36%, 巡航距离至少减少26%, 并且推荐时间仅需85 ms。

关键词: 载客路线推荐, 载客区域推荐, 层次化推荐, 极深因子分解机, 深度Q网络

Abstract:

Taxi pick-up recommendations can increase driver profits, improve traffic efficiency, enhance urban travel experiences, and advance intelligent transportation systems. Existing methods typically recommend either pick-up areas or pick-up routes to drivers, without combining both, resulting in data sparsity and challenges in balancing recommendation accuracy with real-time performance. This study proposes a hierarchical recommendation model for taxi pick-up routes using GPS data incorporating a sparsity-resistant extreme Deep Factorization Machine (xDeepFM), Deep Q Network (DQN) reinforcement learning algorithm, and a hierarchical recommendation strategy. The proposed method first recommends a high-probability pick-up area (large grid) offline to reduce online computational load. When a taxi driver requests a real-time pick-up recommendation, a smaller high-probability pick-up within the offline-recommended large grid is suggested. Finally, a pick-up route is planned for the driver. Experiments on the DiDi dataset demonstrate that, compared to existing state-of-the-art methods, the proposed approach can reduce idle taxi drivers' cruising time by at least 36% and cruising distance by at least 26%, and the recommendation time is only 85 ms.

Key words: pick-up route recommendation, pick-up area recommendation, hierarchical recommendation, extreme Deep Factorization Machine(xDeepFM), Deep Q Network(DQN)