1 |
|
2 |
YU W H, WU L F, DENG Y, et al. Technical question answering across tasks and domains[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2021: 178-186.
|
3 |
ZHANG Y C, AHMED A, JOSIFOVSKI V, et al. Taxonomy discovery for personalized recommendation[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2014: 243-252.
|
4 |
HEARST M A. Automatic acquisition of hyponyms from large text corpora[C]//Proceedings of the 14th Conference on Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 1992: 539-545.
|
5 |
COCOS A, APIDIANAKI M, CALLISON-BURCH C. Comparing constraints for taxonomic organization[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2018: 323-333.
|
6 |
SHEN J M, SHEN Z H, XIONG C Y, et al. TaxoExpan: self-supervised taxonomy expansion with position-enhanced graph neural network[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/2001.09522.
|
7 |
YU Y, LI Y H, SHEN J M, et al. STEAM: self-supervised taxonomy expansion with mini-paths[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2020: 1026-1035.
|
8 |
ZHANG J Y , SONG X C , ZENG Y , et al. Taxonomy completion via triplet matching network. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4662- 4670.
doi: 10.1609/aaai.v35i5.16596
|
9 |
LIU Z C, XU H Y, WEN Y L, et al. TEMP: taxonomy expansion with dynamic margin loss through taxonomy-paths[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 3854-3863.
|
10 |
ZENG Q K, LIN J F, YU W H, et al. Enhancing taxonomy completion with concept generation via fusing relational representations[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2021: 2104-2113.
|
11 |
JIANG M H, SONG X C, ZHANG J Y, et al. TaxoEnrich: self-supervised taxonomy completion via structure-semantic representations[C]//Proceedings of the 2022 ACM Web Conference. New York, USA: ACM Press, 2022: 925-934.
|
12 |
WANG S, ZHAO R H, ZHENG Y F, et al. QEN: applicable taxonomy completion via evaluating full taxonomic relations[C]//Proceedings of the 2022 ACM Web Conference. New York, USA: ACM Press, 2022: 1008-1017.
|
13 |
|
14 |
AROUS I, DOLAMIC L, CUDRÉ-MAUROUX P. TaxoComplete: self-supervised taxonomy completion leveraging position-enhanced semantic matching[C]//Proceedings of the 2023 ACM Web Conference. New York, USA: ACM Press, 2023: 2509-2518.
|
15 |
ZHOU J , CUI G Q , HU S D , et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
16 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 4171-4186.
|
17 |
|
18 |
LIU Y H, HAN T L, MA S Y, et al. Summary of ChatGPT-related research and perspective towards the future of large language models[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2304.01852v4.
|
19 |
|
20 |
COLIN R , NOAM S , ADAM R , et al. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551.
|
21 |
LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 7871-7880.
|
22 |
|
23 |
|
24 |
SU H J, SHI W J, KASAI J, et al. One embedder, any task: instruction-finetuned text embeddings[C]//Proceedings of the Findings of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2023: 1102-1121.
|
25 |
邓远飞, 李加伟, 蒋运承. 基于知识注入提示学习的专利短语相似度计算. 计算机工程, 2024, 50 (4): 294- 302.
doi: 10.19678/j.issn.1000-3428.0067595
|
|
DENG Y F , LI J W , JIANG Y C . Similarity computation of patent phrase based on knowledge injection prompt learning. Computer Engineering, 2024, 50 (4): 294- 302.
doi: 10.19678/j.issn.1000-3428.0067595
|
26 |
李鸿鹏, 马博, 杨雅婷, 等. 基于槽位语义增强提示学习的篇章级事件抽取方法. 计算机工程, 2023, 49 (9): 23- 31.
doi: 10.19678/j.issn.1000-3428.0066170
|
|
LI H P , MA B , YANG Y T , et al. Document-level event extraction method based on slot semantic enhanced prompt learning. Computer Engineering, 2023, 49 (9): 23- 31.
doi: 10.19678/j.issn.1000-3428.0066170
|
27 |
QIAO S F, OU Y X, ZHANG N Y, et al. Reasoning with language model prompting: a survey[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2023: 5368-5393.
|
28 |
WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3733-3742.
|
29 |
XIA T Y, WANG Y, TIAN Y, et al. Using prior knowledge to guide BERT's attention in semantic textual matching tasks[C]//Proceedings of the 2021 Web Conference. New York, USA: ACM Press, 2021: 2466-2475.
|
30 |
|
31 |
LIU P F , YUAN W Z , FU J L , et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 2023, 55 (9): 1- 35.
URL
|
32 |
GAO T Y, FISCH A, CHEN D Q. Making pre-trained language models better few-shot learners[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 3816-3830.
|
33 |
|
34 |
|