1 |
AlGHAMDI S, WIN K T, VlAHU-GJORGIEVSKA E. Information security governance challenges and critical success factors: systematic review. Computers[WT《Times New Roman》]& Security, 2020, 99, 102030- 102068.
|
2 |
RUSTAD S, ANDONO P N, SHIDIK G F. Digital image steganography survey and investigation (goal, assessment, method, development, and dataset). Signal Processing, 2022, 206, 108908- 108935.
|
3 |
付章杰, 王帆, 孙星明, 等. 基于深度学习的图像隐写方法研究. 计算机学报, 2020, 43(9): 1656- 1672.
|
|
FU Z J, WANG F, SUN X M, et al. Research on steganography of digital images based on deep learning. Chinese Journal of Computers, 2020, 43(9): 1656- 1672.
|
4 |
JUNG K H, YOO K Y. Steganographic method based on interpolation and LSB substitution of digital images. Multimedia Tools and Applications, 2015, 74, 2143- 2155.
doi: 10.1007/s11042-013-1832-y
|
5 |
廖琪男. 利用模运算及其周期性特点的安全隐写算法. 中国图象图形学报, 2012, 17(10): 1206- 1212.
doi: 10.11834/jig.20121002
|
|
LIAO Q N. Secure steganography based on modulo and its cyclical characteristic. Journal of Image and Graphics, 2012, 17(10): 1206- 1212.
doi: 10.11834/jig.20121002
|
6 |
JIA Y, YIN Z, ZHANG X, et al. Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Processing, 2019, 163, 238- 246.
doi: 10.1016/j.sigpro.2019.05.020
|
7 |
苏炯铭, 刘鸿福, 项凤涛, 等. 深度神经网络解释方法综述. 计算机工程, 2020, 46(9): 1- 15.
doi: 10.19678/j.issn.1000-3428.0057951
|
|
SU J M, LIU H F, XIANG F T, et al. Survey of interpretation methods for deep neural networks. Computer Engineering, 2020, 46(9): 1- 15.
doi: 10.19678/j.issn.1000-3428.0057951
|
8 |
LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature, 2015, 521(7553): 436- 444.
doi: 10.1038/nature14539
|
9 |
张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述. 中国图像图形学报, 2021, 26(10): 2305- 2325.
|
|
ZHANG K, FENG X H, GUO Y R, et al. Overview of deep convolutional neural networks for image classification. Journal of Image and Graphics, 2021, 26(10): 2305- 2325.
|
10 |
MASANA M, LIU X, TWARDOWSKI B, et al. Class-incremental learning: survey and performance evaluation on image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5513- 5533.
|
11 |
陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述. 软件学报, 2021, 32(4): 1201- 1227.
|
|
CHEN K Q, ZHU Z L, DENG X M, et al. Deep learning for multi-scale object detection: a survey. Journal of Software, 2021, 32(4): 1201- 1227.
|
12 |
CHENG G, YUAN X, YAO X, et al. Towards large-scale small object detection: survey and benchmarks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467- 13488.
|
13 |
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述. 软件学报, 2019, 30(2): 440- 468.
|
|
TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning. Journal of Software, 2019, 30(2): 440- 468.
|
14 |
MINAEE S, YURI B, FATIH P, et al. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3523- 3542.
|
15 |
刘颖, 程美, 王富平, 等. 深度哈希图像检索方法综述. 中国图象图形学报, 2020, 25(7): 1296- 1317.
|
|
LIU Y, CHENG M, WANG F P, et al. Deep Hashing image retrieval methods. Journal of Image and Graphics, 2020, 25(7): 1296- 1317.
|
16 |
DUBEY S R. A decade survey of content based image retrieval using deep learning. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5): 2687- 2704.
|
17 |
BALUJA S. Hiding images within images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(7): 1685- 1697.
|
18 |
WU P, YANG Y, LI X. StegNet: mega image steganography capacity with deep convolutional network. Future Internet, 2018, 10(6): 56- 70.
|
19 |
DUAN X, JIA K, LI B, et al. Reversible image steganography scheme based on a U-Net structure. IEEE Access, 2019, 7(1): 9314- 9323.
|
20 |
ZHANG C, BENZ P, KARJAUY A, et al. UDH: universal deep hiding for steganography, watermarking, and light field messaging. Advances in Neural Information Processing Systems, 2020, 33, 10223- 10234.
|
21 |
袁超, 王宏霞, 何沛松. 基于注意力机制的高容量通用图像隐写模型. 软件学报, 2024, 35(3): 1502- 1514.
|
|
YUAN C, WANG H X, HE P S. High-volume universal image steganography model based on attention mechanism. Journal of Software, 2024, 35(3): 1502- 1514.
|
22 |
ZHONG N, QIAN Z, WANG Z, et al. Batch steganography via generative network. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(1): 88- 97.
|
23 |
KOBYZEV I, PRINCE S J D, BRUBAKER M A. Normalizing flows: an introduction and review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3964- 3979.
|
24 |
KINGMA D P, DHARIWAL P. Glow: generative flow with invertible 1×1 convolutions. Advances in Neural Information Processing Systems, 2018, 32, 31- 40.
|
25 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
26 |
LU S P, WANG R, ZHONG T, et al. Large-capacity image steganography based on invertible neural networks[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 10816-10825.
|
27 |
JING J, DENG X, XU M, et al. HiNet: deep image hiding by invertible network[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 4733-4742.
|
28 |
XU Y, MOU C, HU Y, et al. Robust invertible image steganography[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 7875-7884.
|
29 |
LUO Y, ZHOU T, LIU F, et al. IRWArt: levering watermarking performance for protecting high-quality artwork images[C]//Proceedings of the ACM Web Conference 2023. New York, USA: Association for Computing Machinery, 2023: 2340-2348.
|
30 |
LI L, ZHANG W, QIN C, et al. Adversarial batch image steganography against CNN-based pooled steganalysis. Signal Processing, 2021, 181, 107920- 107930.
doi: 10.1016/j.sigpro.2020.107920
|
31 |
LIN T Y, MARIE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
32 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
33 |
|
34 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|