1 |
BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Washington D.C., USA: IEEE Press, 2005: 60-65.
|
2 |
Dabov K , Foi A , Katkovnik V , et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16 (8): 2080- 2095.
doi: 10.1109/TIP.2007.901238
|
3 |
周博超, 韩雨男, 桂志国, 等. 基于VGG网络与深层字典的低剂量CT图像去噪算法. 计算机工程, 2022, 48 (4): 191- 196.
doi: 10.19678/j.issn.1000-3428.0060582
|
|
ZHOU B C , HAN Y N , GUI Z G , et al. Low-dose CT image denoising algorithm based on VGG network and deep dictionary. Computer Engineering, 2022, 48 (4): 191- 196.
doi: 10.19678/j.issn.1000-3428.0060582
|
4 |
刘一畅, 马伟, 徐士彪, 等. 基于卷积神经网络的边缘保真图像去噪算法. 计算机辅助设计与图形学学报, 2020, 32 (11): 1822- 1831.
doi: 10.3724/SP.J.1089.2020.18170
|
|
LIU Y C , MA W , XU S B , et al. Edge-fidelity image denoising based on convolutional neural network. Journal of Computer-Aided Design [WT《Times New Roman》]& Computer Graphics, 2020, 32 (11): 1822- 1831.
doi: 10.3724/SP.J.1089.2020.18170
|
5 |
ZHANG K , ZUO W , CHEN Y , et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 2017, 26 (7): 3142- 3155.
doi: 10.1109/TIP.2017.2662206
|
6 |
FURUTA R , INOUE N , YAMASAKI T . PixelRL: fully convolutional network with reinforcement learning for image processing. IEEE Transactions on Multimedia, 2019, 22 (7): 1704- 1719.
URL
|
7 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13713-13722.
|
8 |
DE ASIS K, HERNANDEZ-GARCIA J, HOLLAND G, et al. Multi-step reinforcement learning: a unifying algorithm[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2018: 2902-2909.
|
9 |
ZHANG X, GAO W, YUAN H, et al. JE2NET: joint exploitation and exploration in reinforcement learning based image restoration[C]//Proceedings of ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D.C., USA: IEEE Press, 2022: 2090-2094.
|
10 |
ZHANG J , ZHANG Q , ZHAO X , et al. Boosting denoisers with reinforcement learning for image restoration. Soft Computing, 2022, 26 (7): 3261- 3272.
doi: 10.1007/s00500-022-06840-3
|
11 |
CHEN B H, CHENG H Y, YIN J L. Adaptive actor-critic bilateral filter[C]//Proceedings of ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2022: 1675-1679.
|
12 |
XI R , MA T , CHEN X , et al. Image enhancement using adaptive region-guided multi-step exposure fusion based on reinforcement learning. IEEE Access, 2023, 11 (1): 31686- 31698.
doi: 10.1109/ACCESS.2023.3262751
|
13 |
MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, USA: PMLR, 2016: 1928-1937.
|
14 |
SHUMAN D I , NARANG S K , FROSSARD P , et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98.
doi: 10.1109/MSP.2012.2235192
|
15 |
PANG J , CHEUNG G . Graph Laplacian regularization for image denoising: analysis in the continuous domain. IEEE Transactions on Image Processing, 2017, 26 (4): 1770- 1785.
doi: 10.1109/TIP.2017.2651400
|
16 |
ZENG J, PANG J, SUN W, et al. Deep graph Laplacian regularization for robust denoising of real images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE Press, 2019: 1759-1768.
|
17 |
杨惟轶, 白辰甲, 蔡超, 等. 深度强化学习中稀疏奖励问题研究综述. 计算机科学, 2020, 47 (3): 182- 191.
URL
|
|
YANG W Y , BAI C J , CAI C , et al. Survey on sparse reward in deep reinforcement learning. Computer Science, 2020, 47 (3): 182- 191.
URL
|
18 |
钱冲, 常冬霞. 图拉普拉斯正则化稀疏变换学习图像去噪算法. 计算机工程与应用, 2022, 58 (5): 232- 239.
URL
|
|
QIAN C , CHANG D X . Image denoising algorithm based on graph Laplacian regularized sparse transform learning. Computer Engineering and Applications, 2022, 58 (5): 232- 239.
URL
|
19 |
Chen F, Cheung G, Zhang X. Fast [WT《Times New Roman》]& robust image interpolation using gradient graph laplacian regularizer[C]//Proceedings of 2021 IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2021: 1964-1968.
|
20 |
YIN H, GONG Y, QIU G. Side window filtering[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 8758-8766.
|
21 |
ROTH S, BLACK M J. Fields of experts: a framework for learning image priors[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Washington D.C., USA: IEEE Press, 2005: 860-867.
|
22 |
MA K , DUANMU Z , WU Q , et al. Waterloo exploration database: new challenges for image quality assessment models. IEEE Transactions on Image Processing, 2016, 26 (2): 1004- 1016.
doi: 10.1109/TIP.2016.2631888
|
23 |
BUTLER D J, WULFF J, STANLEY G B, et al. A naturalistic open source movie for optical flow evaluation[C]//Proceedings of 12th European Conference on Computer Vision (ECCV). New York, USA: Springer, 2012: 611-625.
|
24 |
FUJITA Y , NAGARAJAN P , KATAOKA T , et al. ChainerRL: a deep reinforcement learning library. The Journal of Machine Learning Research, 2021, 22 (1): 3557- 3570.
|
25 |
|