| 1 |  ADIBHATLA V A ,  CHIH H C ,  HSU C C , et al.  Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Mathematical Biosciences and Engineering, 2021, 18 (4): 4411- 4428.  doi: 10.3934/mbe.2021223
 | 
																													
																						| 2 |  FEL J T ,  ELLIS C T ,  TURK-BROWNE N B .  Automated and manual segmentation of the hippocampus in human infants. Developmental Cognitive Neuroscience, 2023, 60, 101203.  doi: 10.1016/j.dcn.2023.101203
 | 
																													
																						| 3 |  HARRISON K ,  PULLEN H ,  WELSH C , et al.  Machine learning for auto-segmentation in radiotherapy planning. Clinical Oncology, 2022, 34 (2): 74- 88.  doi: 10.1016/j.clon.2021.12.003
 | 
																													
																						| 4 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3431-3440. URL
 | 
																													
																						| 5 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1802.02611 . | 
																													
																						| 6 |  | 
																													
																						| 7 |  DOU Z W ,  YE D ,  WANG B Y .  AutoSegEdge: searching for the edge device real-time semantic segmentation based on multi-task learning. Image and Vision Computing, 2023, 136, 104719.  doi: 10.1016/j.imavis.2023.104719
 | 
																													
																						| 8 |  PRISACARIU V A ,  REID I .  3D hand tracking for human computer interaction. Image and Vision Computing, 2012, 30 (3): 236- 250.  doi: 10.1016/j.imavis.2012.01.003
 | 
																													
																						| 9 |  ZAITOUN N M ,  AQEL M J .  Survey on image segmentation techniques. Procedia Computer Science, 2015, 65, 797- 806.  doi: 10.1016/j.procs.2015.09.027
 | 
																													
																						| 10 | URL
 | 
																													
																						| 11 | 景庄伟, 管海燕, 彭代峰, 等.  基于深度神经网络的图像语义分割研究综述. 计算机工程, 2020, 46 (10): 1- 17.  doi: 10.3778/j.issn.1002-8331.2001-0320
 | 
																													
																						|  |  JING Z W ,  GUAN H Y ,  PENG D F , et al.  Survey of research in image semantic segmentation based on deep neural network. Computer Engineering, 2020, 46 (10): 1- 17.  doi: 10.3778/j.issn.1002-8331.2001-0320
 | 
																													
																						| 12 | URL
 | 
																													
																						| 13 | URL
 | 
																													
																						| 14 | ZHANG G, LU X, TAN J R, et al. RefineMask: towards high-quality instance segmentation with fine-grained features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 6861-6869. URL
 | 
																													
																						| 15 |  | 
																													
																						| 16 |  WANG W G ,  LAI Q X ,  FU H Z , et al.  Salient object detection in the deep learning era: an in-depth survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3239- 3259.  doi: 10.1109/TPAMI.2021.3051099
 | 
																													
																						| 17 |  ZHAO Q J ,  SHENG T ,  WANG Y T , et al.  M2Det: a single-shot object detector based on multi-level feature pyramid network. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 9259- 9266.  doi: 10.1609/aaai.v33i01.33019259
 | 
																													
																						| 18 | DENG Z J, HU X W, ZHU L, et al. R3Net: recurrent residual refinement network for saliency detection[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2018: 684-690. URL
 | 
																													
																						| 19 | WAN W K, GENG H R, LIU Y, et al. UniDexGrasp++: improving dexterous grasping policy learning via geometry-aware curriculum and iterative generalist-specialist learning[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2304.00464v2 .URL
 | 
																													
																						| 20 |  | 
																													
																						| 21 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778. URL
 | 
																													
																						| 22 | URL
 | 
																													
																						| 23 | ZHAO Z R, XIA C Q, XIE C X, et al. Complementary trilateral decoder for fast and accurate salient object detection[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4967-4975. URL
 | 
																													
																						| 24 |  ZHOU X F ,  FANG H ,  LIU Z , et al.  Dense attention-guided cascaded network for salient object detection of strip steel surface defects. IEEE Transactions on Instrumentation Measurement, 2022, 71, 3132082.  doi: 10.1109/TIM.2021.3132082
 | 
																													
																						| 25 | URL
 | 
																													
																						| 26 |  ZHENG P ,  FU H ,  FAN D P , et al.  GCoNet+: a stronger group collaborative co-salient object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 10929- 10946.  doi: 10.1109/TPAMI.2023.3264571
 | 
																													
																						| 27 |  ZHOU X ,  SHEN K ,  WENG L , et al.  Edge-guided recurrent positioning network for salient object detection in optical remote sensing images. IEEE Transactions on Cybernetics, 2023, 53 (1): 539- 552.  doi: 10.1109/TCYB.2022.3163152
 | 
																													
																						| 28 |  LI G ,  LIU Z ,  ZENG D , et al.  Adjacent context coordination network for salient object detection in optical remote sensing images. IEEE Transactions on Cybernetics, 2023, 53 (1): 526- 538.  doi: 10.1109/TCYB.2022.3162945
 | 
																													
																						| 29 | PIAO Y R, WANG J, ZHANG M, et al. MFNet: multi-filter directive network for weakly supervised salient object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 4136-4145. URL
 | 
																													
																						| 30 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520. URL
 | 
																													
																						| 31 | LIN Y H, SUN H, LIU N Z, et al. A lightweight multi-scale context network for salient object detection in optical remote sensing images[C]//Proceedings of the 26th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 238-244. URL
 | 
																													
																						| 32 | GUO C L, SZEMENYEI M, YI Y G, et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 1236-1242. | 
																													
																						| 33 |  QIN X B ,  ZHANG Z C ,  HUANG C Y , et al.  U2Net: going deeper with nested U-structure for salient object detection. Pattern Recognition, 2020, 106, 107404.  doi: 10.1016/j.patcog.2020.107404
 | 
																													
																						| 34 |  LI G Y ,  BAI Z ,  LIU Z , et al.  Salient object detection in optical remote sensing images driven by transformer. IEEE Transactions on Image Processing, 2023, 32, 5257- 5269.  doi: 10.1109/TIP.2023.3314285
 | 
																													
																						| 35 | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2102.04306v1 .URL
 | 
																													
																						| 36 |  XU G A ,  LI J C ,  GAO G W , et al.  Lightweight real-time semantic segmentation network with efficient transformer and CNN. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (12): 15897- 15906.  doi: 10.1109/TITS.2023.3248089
 |